Project Summary
 

The Dead Sea Fault System (DSFS) is one of the largest continental strike-slip faults in the world.  As the transform plate boundary between the Arabian and African plates, the DSFS represents a key tectonic feature in the eastern Mediterranean region.  Despite its significance, the understanding of the DSFS as an active, seismogenic structure is relatively limited, particularly along the central and northern sections of the fault in Syria and Lebanon.  By studying active tectonic processes operating at different time scales along the DSFS in Syria and Lebanon, this research will address several important issues including:


In order to bridge the gap that typically exists between neotectonic and geodetic/seismological assessments of strain, results of this neotectonic and geodetic work are currently integrated with a lengthy, well documented historical record of large earthquakes (approximately M > 6.5) over at least the past 2,000 years.  Such a lengthy historical record spanning multiple earthquake cycles are generally unavailable along any other major plate boundary and are unique to this region.

To address the issues outlined above, the following is being accomplished:


Integrating and modeling neotectonic, geodetic, and historical data for the DSFS will provide new insight on the kinematics and dynamics of the DSFS with broader implications for active strike-slip faults, in general.   Furthermore, the results of this study will have significance for regional earthquake hazard in Syria and Lebanon, as well as neighboring countries, where large, rapidly expanding populations heighten the need for accurate earthquake  hazard assessments.
This collaborative study builds upon past and ongoing joint research involving Cornell, MIT, IPG Strasbourg, and Syrian and Lebanese institutions.

Return to Project Home

Page last updated September 4, 2001.