Published as:

Holocene faulting and earthquake recurrence along the Serghaya branch of the Dead Sea fault system in Syria and Lebanon

Francisco Gomez¹, Mustapha Meghraoui², Abdul Nasser Darkal³, Fouad Hijazi⁴, Michel Mouty⁴, Youssef Suleiman⁴, Reda Sbeinati⁵, Ryad Darawcheh⁵, Riad Al-Ghazzi⁴, Muawia Barazangi¹

¹Institute for the Study of the Continents, Cornell University, Ithaca, New York 14853, USA
²EOST, Institut de Physique du Globe, Strasbourg, France
³Department of Geology, Damascus University, Damascus, Syria
⁴Higher Institute for Applied Science and Technology, Damascus, Syria
⁵Department of Geology, Atomic Energy Commission, Damascus, Syria

Abbreviated title: Paleoseismology along the Serghaya fault, Syria

Corresponding Author: Francisco Gomez
Institute for the Study of the Continents
Snee Hall
Cornell University
Ithaca, NY 14853
USA

phone: +1 607 255 2900
fax: +1 607 254 4780
e-mail: fgomez@geology.cornell.edu
SUMMARY

The Serghaya fault, located approximately along the Syrian-Lebanese border, is a prominent structure within the 200 km restraining bend in the left-lateral Dead Sea fault system. This study documents palaeoseismic and geomorphic expressions of Holocene movements on the Serghaya fault based on trench excavations and radiocarbon dates. Trenches were excavated across and parallel to a 4.5 meter fault scarp where late Pleistocene sediments are faulted against Holocene alluvium and colluvium. Locally oblique slip on the Serghaya fault has produced a sequence of fault-derived colluvial wedges that distinguishes individual palaeoseismic events. In addition, the trench excavations also depict a sequence of buried and displaced channels. Our palaeoseismic study reveals evidence for 5 surface-rupturing events within the past ~6,500 years. The last event involved 2 - 2.5 meters of primarily left-lateral displacement and may correspond with one of two historically documented earthquakes during the 18th century (in 1705 and 1759). The displaced channels provide an estimated slip rate of approximately 1.4 ± 0.2 mm yr$^{-1}$ during the Holocene. The chronological relationships between the colluvial wedges and faulted channels demonstrate an average left-lateral displacement of about 2 meters per event, suggesting that such events correspond with earthquakes of $M \geq 7$ with a mean return time of about 1,300 years. These results demonstrate that the Serghaya fault may present a previously overlooked earthquake hazard for populations in the vicinity of the Anti Lebanon Mountains, including the cities of Damascus and Beirut. In a regional context, the inferred slip rate along the Serghaya fault accounts for about 25% of the total expected motion of Arabia relative to Africa along the Dead Sea fault system. The fact that the Serghaya fault accounts for only a fraction of the expected plate motion implies that the remaining strike-slip and shortening must be accommodated by other active fault branches within the large restraining bend of the Dead Sea fault system. These results contradict suggestions that the northern Dead Sea fault system in Lebanon and Syria is presently inactive as a result of an evolving regional stress field in the eastern Mediterranean region.

Keywords: Dead Sea fault, slip rate, earthquakes, Syria, Lebanon
1 INTRODUCTION

Spanning nearly 1000 km from the Gulf of Aqaba in the south to the Taurus Mountains in southern Turkey, the Dead Sea fault system (DSFS) ranks among the large strike-slip fault systems in the world and represents a key element of the eastern Mediterranean tectonic framework. The DSFS is the left-lateral transform boundary between the Arabian and African plates and accommodates their differential convergence relative to Eurasia (e.g., Freund et al. 1970; Ben Menahem et al. 1976). However, recent debates about the slip rate and kinematics of the DSFS, especially the activity of the northern ~500 km of the DSFS in Lebanon and Syria (e.g., Girdler 1990; Butler et al. 1997), attest to the limited understanding of the DSFS as an active and seismogenic system.

The general structure of the left-lateral DSFS consists of two relatively simple northern and southern sections, joined by a ~200 km long restraining bend located mostly in Lebanon (see Fig. 1; Garfunkel et al. 1981; Quennell 1984; Beydoun 1999). Within this restraining bend, the fault system comprises several distinct fault branches (e.g. Walley 1988). An understanding of which structures are active, along with their kinematics, is essential to unravel the nature and tectonic evolution of this part of the plate boundary and how it links the structurally simpler sections of the DSFS to the north and south.

Another motivation for studying active tectonics of the DSFS is a better understanding of the regional earthquake hazard in the eastern Mediterranean. The DSFS, in particular, presents a special opportunity to integrate several millennia of historical records of large earthquakes with palaeoseismic methods in order to understand the processes of earthquake recurrence in the plate boundary deformation. Historical accounts testify to large and devastating earthquakes along the DSFS over the past several millennia (e.g. Poirier & Taher 1980; Ambraseys & Barazangi 1989; Ambraseys et al. 1994; Amiran et al. 1994; Darawcheh et al. 2000; Sbeinati et al. 2002, in review).

For the central and northern DSFS, these historical records contrast with instrumental records of seismicity during the past century depicting little earthquake activity (e.g. Ambraseys & Jackson 1998). This apparent behaviour of seismic quiescence punctuated by large earthquakes underscores the need for geological studies of past earthquakes (i.e., palaeoseismology and tectonic geomorphology) to illuminate the patterns of large earthquake recurrence along this plate boundary. During the past decade, palaeoseismic investigations along
the southern DSFS have proven successful in identifying surface ruptures associated with historical earthquakes (e.g. Ellenblum et al. 1998; Ken-Tor et al. 2001), as well as documenting evidence for long-term earthquake behaviour such as temporal clustering (e.g. El-Isa 1986; Marco et al. 1996; Zilberman et al. 2000). Aside from one recent study at the site of a faulted Hellenistic or Roman aqueduct in Syria (Meghraoui et al. 2003, in press), similar studies are, in general, lacking for the central and northern DSFS in Lebanon and Syria (i.e., from the restraining bend northward). In addition to earthquake recurrence histories, fundamental kinematic parameters such as rates of fault slip are not well documented. Hence, the DSFS presents a poorly understood earthquake hazard for the surrounding populations, particularly in the central and northern sections. In the case of the restraining bend, the relative activity of different active branches will have implications for earthquake hazard assessment, particularly if concepts such as stress triggering and fault interactions are considered (e.g. Stein et al. 1997; Mohamad et al. 2000).

This study examines the Serghaya fault, a branch of the DSFS within the restraining bend that, until recently, has been generally regarded as inactive since the Pliocene (e.g. Walley 1988; Girdler 1990; Butler et al. 1997). This study presents detailed observations and analyses that build upon our previously reported reconnaissance work in the region (Gomez et al. 2001). These new results demonstrate that the Serghaya fault has important implications in terms of regional tectonics and earthquake hazard. Palaeoseismic and geomorphic evidence demonstrates a record of Holocene earthquakes and provide a Holocene slip rate for this fault branch. After discussing the implications for the regional earthquake hazard, these results are placed into the context of present-day, regional tectonics of the DSFS.

1.1 Regional tectonic and seismotectonic setting

The present-day relative motion between Arabia and Africa is estimated to be 4 – 8 mm yr\(^{-1}\), based on plate tectonic models (e.g. Joffe & Garfunkel 1987; Jestin et al. 1994) and recent GPS observations (e.g. McClusky et al. 2000, 2003, in press). This is consistent with geological estimates of Quaternary slip rates for the southern DSFS (e.g. Klinger et al. 2000a; Garfunkel et al. 1981), as well as an estimated slip rate, averaged over ~2,000 years, from the aforementioned faulted aqueduct in Syria (Meghraoui et al. 2003, in press). Interestingly, almost all models of instantaneous (i.e., present-day) plate motions predict a general northward increase in the rates of slip along the DSFS, as well as increasing component of relative convergence between the
Arabian and African plates across the DSFS. This assumes that all of the relative plate motion is accommodated by the DSFS. The present episode of tectonic activity of the DSFS is believed to have initiated during the end of the Miocene or early Pliocene (e.g. Hempton 1987).

Available seismotectonic observations, although limited, are consistent with the general model of a continental transform system. The kinematics of the large Gulf of Aqaba earthquake in 1995 (M ~7.3) demonstrated predominantly left-lateral motion along the southern DSFS (Pinar & Turkelli 1997; Klinger et al. 1999). The paucity of large, instrumentally recorded earthquakes has precluded accurate assessment of seismic moment release along the plate boundary (e.g. Jackson & Mckenzie 1988). However, some have suggested 6 - 10 mm yr\(^{-1}\) of slip by inferring seismic moment and other parameters of large, historically documented earthquakes (e.g. Westaway 1994). The morphological expression of the DSFS from remotely sensed imagery also shows a general spatial correspondence with seismicity patterns (e.g. Al-Ghazzi 1992).

The 200 km long northeast-southwest striking restraining bend encompasses the Mt. Lebanon and Anti-Lebanon ranges. At the southern end of this restraining bend, the relatively simple trace of the southern DSFS branches into several distinct fault splays, including the Yammouneh, Serghaya, Rachaya, Hasbaya, and Roum faults (Fig. 1) (e.g. Walley 1988; Heimann & Ron 1993). Of all of these fault branches, the Yammouneh fault is the only through-going structure that connects the northern and southern sections of the DSFS.

Adjacent to the restraining bend, the Palmyride fold belt is another regionally prominent tectonic element (Fig. 1). This Cenozoic fold belt corresponds with a late Palaeozoic-early Mesozoic (Neo-Tethyan) rift basin that was tectonically inverted during the Cenozoic (e.g. Chaimov et al. 1990). Scattered seismicity suggests that the Palmyride region is still tectonically active (e.g. Chaimov et al. 1990; Brew et al. 2001). Hence, the Palmyrides represent some internal deformation of the Arabian plate that might have some kinematic relationship with the plate boundary deformation of the DSFS.

1.2 Serghaya fault and Zabadani valley

Branching from the southern DSFS in the Golan Heights, the Serghaya fault can be traced approximately 125 km through the Anti Lebanon Mountains to the eastern edge of the Bekaa Valley (Fig. 2). A detailed map of the Serghaya fault zone (Fig. 2) has resulted from the analysis of remote sensing imagery (satellite imagery and aerial photos), a high-resolution (20
Digital elevation model (DEM), information from published geological maps (e.g. Dubertret 1955), and ground-truth from field investigations. Fig. 2 also depicts the morphology of the region using the DEM to generate a shaded relief image. The gross geomorphic expressions of the Serghaya fault include the alignment of linear valleys and large stream valley deflections. Almost all valleys show clear leftward deflections implying long-term, tectonic control of the landscape. Furthermore, left steps in the fault zone correspond with the elongate basins suggesting these are pull-apart basins.

Along the southern half of the Serghaya fault, the uplift of the Mt. Hermon block in the Anti Lebanon Mountains forms within an apparent strike-slip duplex comprising the Serghaya and Rachaya faults (Fig. 2). This interpretation of a crustal sliver trapped between two strike-slip faults is consistent with reported vertical-axis rotations of the Mt. Hermon region observed with palaeomagnetic data (e.g. Ron 1987; Heimann & Ron, 1993). Field evidence for Quaternary strike-slip faulting along the Serghaya fault is observed as far north as the village of Aarsal, near the edge of the Bekaa Valley (Fig. 2). North of this point, the trace of the Serghaya fault is obscure. Existing geological maps and overhead imagery depict neither geomorphic nor structural indications to suggest that the northern Serghaya fault re-connects with the transform boundary (Fig. 2). Such a linkage would be expected to involve local extension and subsidence (a leftward step in a left-lateral fault system), and these phenomena are not apparent.

Although the Serghaya fault primarily traces through the Mesozoic carbonate bedrock of the Anti Lebanon Mountains, the fault occasionally passes through Quaternary basins, providing an opportunity to observe the expressions of recent fault movements. In the Zebadani Valley of Syria (Fig. 2), the focus of this study, the Serghaya fault bounds the eastern side of the valley. The stereonet in Fig. 3 depicts the fault planes and associated striations measured in faulted late Pleistocene lake sediments in the southern Zebadani Valley. Shear indicators (e.g., slickenside striations and tool marks) demonstrate predominantly left-lateral slip. Rakes of 10° - 20° are observed on sub-vertical fault planes, implying a ratio of strike-slip to dip-slip between 4:1 and 5:1. A 4.0 - 4.5 meter fault scarp results from the oblique fault slip along this portion of the Serghaya fault. Locally, the fault scarp preserves a free face, attesting to recent fault movement. The free face heights suggest approximately 0.5 meters of dip slip for the last episodic movement (Gomez et al. 2001).
Small hillslope drainage deflections also coincide with the fault scarp (Fig. 4). Many of these deflections have been measured and interpreted as true fault displacements (Gomez et al. 2001). All of these small drainages depict minimum deflections of 1.9 - 2.5 meters, as well as larger, composite stream deflections (Fig. 3). The proportion of strike-slip to dip-slip suggested by the stream deflections and scarp free faces, respectively, is consistent with the fault kinematic indicators (stereonet in Fig. 3). Hence, these recent movements are most likely contemporaneous.

One colluvial wedge corresponds with the remnant of the free face, suggesting that the free face represents only one paleoseismic event (e.g., McCalpin 1996). Radiocarbon dating has constrained this paleoseismic indicator within the past 300 years (Gomez et al. 2001). Hence, the free faces and minimum drainage displacements are probably the expressions of the last surface rupturing earthquake, and this event may correspond with one of two well-documented earthquakes that strongly affected the Anti Lebanon Mountains and surrounding regions in the early and mid 18th century (i.e., in 1705 and 1759; see Table 1). The recent timing of this event is also supported by the preservation of a fault scarp free face in late Pleistocene lake sediments.

2 PALAEOSEISMIC STUDY: METHODS AND RESULTS

The presence of an active fault with an apparent coseismic displacement during recent history motivated our effort to extend the record of past earthquakes and their associated displacements back through the Holocene. The evidence of a prominent, young fault scarp and consistent left-lateral stream offsets, along with lacustrine and alluvial deposits, suggested that the southern Zebadani valley might be a promising site for palaeoseismic investigation. Our study focused on a site near the village of Tekieh (see Figs 3, 5, and 6) where the fault juxtaposes recent alluvium against late Pleistocene lacustrine sediments. Microtopographic mapping and analysis was combined with a trench excavation in order to document the earthquake history of the Serghaya fault.

2.1 Local morphology

The Serghaya fault is represented by a composite fault scarp ~4.0 - 4.5 meter high and comprising the boundary between the mountain front and the late Quaternary alluvial apron (Fig. 6). As shown in the topographic profile (Fig. 5b), the lower alluvial surface appears to
correspond with the beveled bedrock in the upper surface. About 150 meters to the south can be
found some of the free faces reported by Gomez et al. (2001).

The up-thrown eastern block of the fault comprises late Quaternary lacustrine sediments
(calcareous silt and gravel) and Pliocene-Quaternary conglomerates (Fig. 5). Radiocarbon dating
of a charcoal fragment from a roadcut exposure of the lacustrine sediments about 0.5 km to the
south yielded a radiocarbon age of 44.6 kyr BP (sample LS-1 in Table 2).

At the trench site, a hillslope drainage with a small catchment area of approximately 0.25
km\(^2\) exits the mountain front (Fig. 3). This ephemeral stream feeds a young alluvial fan that
attains up to about 1 meter of relief above the surface of the older alluvial apron (Fig. 5).
Although today partially truncated on the north side by an orchard, the northern limit of the
younger fan was mapped from air photos dating to 1983.

Emerging from the mouth of the drainage at the fault scarp, the active, ephemeral
streambed deflects southward (i.e., left-lateral) approximately 2 meters (Fig. 5). This deflection
is consistent with the minimum deflections observed in other small drainages in the southern
Zebadani Valley (Fig. 3; Gomez et al. 2001). Hence, we interpret this deflection as a
displacement corresponding with the last surface-rupturing earthquake in the early or mid 18th
century.

2.2 Palaeoseismic trenching

The system of three trenches shown in Figs 5 and 6 was designed to take advantage of
both the vertical and lateral components of the locally oblique fault slip. The trenches were
excavated using a backhoe, and the walls were subsequently cleaned by hand. A 1 meter grid
facilitated the careful logging of all 6 trench walls (3 trenches with 2 walls each) at a scale of
1:20. Within the study site, we mapped the precise positions of the trenches with respect to the
present-day stream channel and fault scarp using a total station.

Trench 1 spanned approximately 8 meters across the fault zone and exposed the Late
Pleistocene lacustrine deposits and the alluvial sediments. This trench was excavated to depths
from 2.5 to 4 meters and provided a view of the relationships between faulting and different
colluvial / alluvial deposits.

Trenches 2 and 3 were excavated 2 - 2.5 meters deep, parallel to the fault scarp (NNE -
SSW) from the mouth of the drainage southward across the alluvial fan. These fault-parallel
trenches, located 4 and 7 meters from the fault, were excavated in order to explore for indications
of lateral displacement. Furthermore, the intersection of Trenches 1 and 2 provided possible stratigraphic ties within the excavation site.

The results presented below reflect all six trench logs. However, for the sake of simplicity, only two trench logs are shown: one wall of the trench crossing the fault (Trench 1; Figs 7 and 8), and one wall of the fault-parallel trench nearer the fault scarp (Trench 2; Figs 9 and 10).

2.3 Radiocarbon dating

The critical age control in this study relied upon radiocarbon dating of buried organic material (Table 2). Samples of detrital charcoal, buried wood, and buried seeds were collected from the trench walls, as well as a sample of charcoal collected from the lacustrine sediments approximately 0.5 km to the south of the trench site (see Table 2). In addition, bulk sediment samples were collected from stratigraphic units more than 1 meter below the surface. Small samples were dated using Accelerator Mass Spectrometry (AMS), and bulk samples from buried soils were crushed, slurried, and sieved prior to chemical pretreatment and dating by decay counting.

Some of the samples, particularly those from shallow levels in the trenches, show evidence of probable contamination. These samples are evident with 14C concentrations greater than 100% Modern in Table 1. These samples typically very small and collected from the uppermost colluvial deposit. We interpret these as probable contamination based on previous information about the uppermost colluvial deposit. Previous dating of relatively intact exposures of the uppermost colluvial wedge (which we correlate with the uppermost colluvial deposit in this study) was reported by Gomez et al. (2001) as radiocarbon “modern”. Furthermore, in this study area, the uppermost colluvial wedge has been severely truncated by agricultural activity. These samples were collected just below the plow zone at depths of 0.2 meters. Hence, there seems to be considerable potential for contamination of these small samples by post-bomb carbon.

The quality of the other reported charcoal samples (from deeper levels in the trenches) is generally good -- these were typically larger samples (> 120 micromoles of graphitized carbon). However, both of the bulk sediment samples yielded very small amounts of organic carbon (< 0.5 g) and required extended counting.
We calibrated radiocarbon ages to calendar dates with the correction curve of Stuiver et al. (1998) using the OxCal program (Bronk Ramsey 1998), and these calibrated ages are reported as ranges of dates representing the probability density function at the 95% (2σ) confidence limits (Table 2). In some cases, the calibrated age ranges were further constrained by applying rules of superposition and Bayesian analysis (e.g. Biasi & Weldon 1994; Bronk Ramsey 1998). This was particularly helpful in assigning probable ages to the base of the earthquake sequence where there is sufficient age control (i.e., relating Channel C3 incision and fill to Wedge 2 -- see below).

2.4 Trench 1: colluvial wedge stratigraphy

Across the fault zone, Trench 1 exposed a stratigraphy of late Pleistocene lacustrine marl and sandy gravel in the up-thrown block and reddish brown to yellowish alluvium and colluvium on the down-thrown (western) side of the fault. The photo mosaic of the northern trench wall in Fig. 7 and the associated trench log in Fig. 8 show the abrupt fault contact between the lacustrine sediments and the younger alluvium. The fault zone is 3 - 4 meters wide, as revealed by shear fabrics in the silt and clay and by alignments of elongate clasts in the matrix-supported alluvium.

Undifferentiated reddish brown alluvium (unit a) characterizes much of the lower stratigraphy (Fig. 8). This deposit consists of gravel, sand, and occasional cobble supported by a clay matrix. This stratigraphic unit appears to correspond with the alluvial apron flanking the mountain front. Locally, it is buried beneath the younger alluvial fan deposit, and adjacent to the fault scarp, it has been buried beneath up to 1.5 meters of scarp-derived colluvium. A bulk soil sample from the top of unit a (i.e., just below colluvial deposit W2) yielded an age of 5280 ± 230 BP. Applying Bayesian methods to the radiocarbon calibration (Biasi & Weldon 1994) -- specifically, knowing that the undifferentiated alluvium predates buried channels incised into unit a (discussed below) -- we calculate a calibrated age of 4720 BC - 4270 BC for the undifferentiated alluvium.

Colluvial "wedge" deposits along fault scarps are important palaeoseismic indicators in cases where local fault movements involve repeated uplift (e.g. McCalpin 1996). In Trench 1, individual colluvial deposits are distinguished by pebbles and other larger clasts defining buried depositional surfaces. The colluvium consists of poorly sorted, matrix supported clasts of late Pliocene-Quaternary conglomerate and lacustrine marl, and the clasts are typically angular to sub-angular suggesting proximal sources. The development of distinct soils in each colluvial
wedge suggests long-term stability of the surface during the time between colluvial depositional events. These colluvial wedges are bounded on the up-thrown, eastern sides by buried scarps 20 - 40 cm in height. These scarps align with shear zones truncating the lower strata, implying that the buried scarps result from fault movements. Furthermore, some of these colluvial bodies are themselves truncated by subsequent faulting as indicated by shear fabrics and buried by younger colluvium.

In total, we distinguished five colluvial wedges above the undifferentiated alluvium (unit a), as well as one within. For this discussion, these are labeled in ascending order as Wedges 1 through 6 (Fig. 8). The colluvial wedges proved challenging for dating owing to a lack of sufficient organic material. Some of the samples show apparent contamination such as modern radiocarbon ages reported for samples from considerable depth. Dates from Wedges 6, 5, and 2 (corresponding with the uppermost, penultimate, and earliest post-unit-a colluvium, respectively) were obtained.

At this site, the uppermost colluvial wedge (Wedge 6) was to be truncated by the plow zone -- the thickness is minimal, and a plastic cigarette wrapper was found 25 cm below the surface, implying recent modification. The remnant of this wedge consisted of centimeter-size pebbles and gravel clasts of limestone and lake sediments. Dating of this wedge was difficult. From within Wedge 6, only small seeds were extracted yielding high concentrations of 14C in excess of 100% Modern. These "post-bomb" samples may, in fact, be very recently deposited, particularly since the top of Wedge 6 has been truncated by modern cultivation (Fig. 8). One charcoal fragment from the sand immediately below Wedge 6 (sample T1-03N with 103.9 ± 1.8% Modern) yielded a calendar age of 1650 AD to present. Owing to its small size (< 27 micro moles of graphitized carbon), a δ^{13}C measurement was not possible, hence an assumed value of 25‰ was used. Other pre-Wedge 6 charcoal samples (also small) yielded high % Modern values, and these probably reflect contamination. Radiocarbon dating of a complete (i.e., not truncated) exposure of the this upper wedge in a small excavation to the north (see Fig. 3) demonstrated Modern and >Modern radiocarbon ages (Gomez et al. 2001). In summary, this uppermost colluvial wedge can be assigned a probable age 1650 AD to present.

Wedge 5 had a yellowish colour and consisted of large clasts with a white patina in a silty-sandy matrix. Charcoal from Wedge 5 yielded an age of 170 BC to 20 AD (2060 ± 30 BP).
The down-slope stratigraphic equivalent is a fine sand/silt that can be traced across the shear zone abutting Wedge 6.

Wedge 4 rests directly beneath Wedge 5 and consists of small gravel and cobble-sized clasts in a silty-sandy matrix. Clasts of limestone and lacustrine sediment are present. Appropriate material for radiocarbon dating could not be found within this deposit. The sandy silt and gravel unit in the western end of the trench appears to be the down-slope stratigraphic equivalent of this unit.

Wedge 3 comprises limestone pebbles (centimeter size) and gravel in a sandy matrix. This unit is covered by the down-slope stratigraphic equivalent of Wedge 4 and truncates against the undifferentiated alluvium.

The oldest colluvium above the undifferentiated alluvium was Wedge 2. This deposit consisted of rounded pebbles and flat gravel in a stratified, reddish-brown matrix. Weakly developed soil structures were observed. Clasts consisted of limestone and lacustrine sediment. A bulk sediment sample from Wedge 2 yielded an age of 4050 BC - 3100 BC (4870 ± 160 BP). Wedge 1 was identified in the base of the trench, within the undifferentiated alluvium. Well rounded pebbles and flat gravel of limestone and lacustrine sediment rest within a reddish-brown matrix. A bulk sample of the soil buried by this colluvial wedge was dated at 5730 - 5320 BC (6590 ± 120 BP).

In summary, the upper five distinct colluvial deposits post-date 5280 ± 230 BP. Stratigraphic relations demonstrate that all five post-alluvium colluvial wedges represent separate depositional episodes; i.e., there is a clear sequence of deposition and burial by successive colluvial deposits. The presence of weakly developed soil structures in the colluvial wedges suggests surface stability between distinct depositional events and argues against creation of the buried scarp by multiple events or fault creep. Hence, we interpret each colluvial wedge to post-date a separate palaeoseismic event that created each buried scarp.

2.5 Trench 2: abandoned channels

Trenches 2 and 3, parallel to the fault scarp, exposed the reddish-brown alluvium incised by channels (Fig. 9). Each channel was filled with moderately to well sorted, frequently clast supported gravel and occasional cobble, within a sandy matrix. This sedimentology indicates a moderately high-energy stream flow. Detrital charcoal collected from each of the channels provided age control of the filling sediments. In total, three channels, including the incision
beneath the present-day drainage, were identified and correlated between the two trenches, with onlapping relationships demonstrating a consistent northward sense of younging (Fig. 10). For each channel, the magnitude of incision is greater in Trench 2 than in Trench 3, i.e., greater incision is found closer to the mouth of the drainage. In addition to stratigraphy, radiocarbon dating confirmed the correlation of channels between Trenches 2 and 3.

Channel C1 is filled by a fining upward sequence approximately 1 meter thick. This is covered by about 1 meter of recent alluvium that truncates and caps Channels C2 and C3. A charcoal fragment from the upper part of Channel C1 yields a calendar age of 600 AD - 780 AD (1354 ± 53 BP).

Channel C2 is very narrow and deeply incised (> 2 meters) into the older alluvium (unit a). During filling, small episodes of re-incision occurred, and the channel was capped by a thin veneer of alluvium that also caps Channel C3. The base of Channel C2 fill dates at 1690 BC - 1400 BC (3233 ± 57 BP).

Channel C3 depicts an initial incision followed by filling with minor episodes of entrenchment, meandering, and widening of the original channel. Charcoal fragments from throughout the filling strata in Channel C3 yield statistically identical ages ($\chi^2 = 0.6 < 7.8$ [95%], 3 degrees of freedom). Since these are from the same deposit, the ages and their Gaussian errors can be combined prior to calibration (Bronk Ramsey 1998) to yield a combined age of 5498 ± 46 BP for the fill. Recalling the 5280 ± 230 BP age from the top of the undifferentiated alluvium (unit a), which represents the incised surface, these ages are statistically very similar. This suggests that the cycle of incision and filling for Channel C3 was a relatively short-lived episode.

Channels 2 and 3 are exposed in both walls of trenches 2 and 3, and the positions of these channels depict linear traces approximately perpendicular to trenches 2 and 3 and to the fault trace (Fig. 5c). In addition, the active stream bed above incised Channel C1 also shows a very linear trace, aside from its abrupt deflection at the fault (Fig. 5c).

3 PALAEOSEISMIC INTERPRETATION: SLIP HISTORY OF THE SERGHAYA FAULT

3.1 Palaeoseismic chronology

Trench stratigraphy and associated chronological information allow the construction of a palaeoseismic record for the SFZ. The key palaeoseismic indicators in this study are the
colluvial deposits exposed in Trench 1, along with the offsets of modern and buried stream channels. In Trench 1, wedges 4 - 6 rest in depositional contact with the buried scarp located above shear zones. This suggests that each of these colluvial wedges corresponds with only one faulting event, i.e., that which produced the buried scarp. The sedimentary geometries of Wedges 1-3 suggest that they too each represent one depositional episode. Following the colluvial wedge model (McCalpin 1996), one colluvial wedges is deposited following each surface-rupturing earthquake. Stratigraphic relationships depict the colluvial wedges following a sequence -- i.e., two wedges are not contemporaneous. Hence, we interpret 6 surface-rupturing earthquakes from this trench study (Fig. 11).

Combining the relative and absolute age control, a history of colluvial wedge deposition (each post-dating a palaeoseismic event) and channel scour-and-fill cycles can be assembled from the trench site. We interpret palaeoseismic events to pre-date colluvial wedges and to post-date channel incision/fill -- if the fill post-dated an event, then it would be expected to comprise more chaotic colluvium derived from the channel wall, rather than the well sorted sand and gravel that are observed. We also assume that the rapid incision/fill cycle of Channel C3 characterizes the incision and fill of Channels 1 and 2, although the geochronological data to test this assumption are lacking. We interpret these channel-scouring events to represent relatively short-lived climatic events within the increasing aridity during the Holocene.

Stratigraphic ties between Trenches 1 and 2 provide additional control on the relative timing of colluvial deposition and the scouring and filling of the buried channels. These stratigraphic ties are illustrated in the 3-dimensional block diagram shown in Fig. 12. The upper fill of Channel C1 corresponds with the younger alluvial fan that locally buries the older alluvial apron. Stratigraphically, the remnant of Wedge 6 lies within this younger alluvial deposit. Another important stratigraphic tie is apparent between the upper part of the Channel C2 fill and the down-slope deposits interpreted to correspond with Wedge 4.

The channel incision/fill episodes and colluvial deposition events are summarized in Fig. 13, along with the interpreted palaeoseismic events, labeled A through F in order of increasing age. In total, five events are interpreted to post-date the older alluvium.

Remnants of Wedge 6 are within the younger alluvium and post-date the filling of Channel C1 (600 - 780 AD). Based on the remnants of Wedge 6, and the previous dating of the youngest colluvial wedge (Gomez et al. 2001), we interpret Wedge 6 to correspond with an
earthquake that occurred during the past 2 - 3 centuries (Event A), and this probably represents one of two well-documented, historical earthquakes that occurred in 1705 and 1759 (Table 1). Both earthquakes caused considerable damage in the Anti-Lebanon region. The 1705 earthquake caused considerable damage to Damascus (Poirier & Taher 1980). The earthquake of 1759 has been well documented (e.g. Ambraseys & Barazangi 1989) and most intensely affected towns in the western part of the Anti Lebanon Mountains and the Bekaa Valley. The macroseismic data suggest a magnitude of about 7.4 and up to 100 km of surface rupture. Reports of surface rupturing "north of Baalbek" (Ambraseys & Barazangi 1989) are ambiguous concerning which side of the Bekaa Valley, and the surface rupture has not yet been identified in the field. From the dating in this trench alone, it is not possible to distinguish between these two events, as they occurred relatively close in time to one another during a time period for which radiocarbon age calibration is poorly controlled (e.g. Stuiver et al. 1993).

Wedges 5 is radiometrically constrained to pre-date Channel C1 fill, and Wedge 4 is stratigraphically constrained to post-date Channel C2 fill. Hence, two palaeoseismic events (events B and C) are interpreted between 170 BC - 20 AD (Wedge 5) and 1690 BC - 1400 BC (Channel C2). It may be possible that Wedge 5 (170 BC - 20 AD) corresponds with a poorly documented earthquake that occurred in 198 BC. Although the reports for this earthquake come primarily from Sidon on the coast of present-day Lebanon, the onshore location of this earthquake is suggested by the report that a town inland was "engulfed" by the earthquake (Ambraseys & White 1997). However, such an interpretation is speculative until the other possible fault branches (e.g. Yammouneh and Roum faults) have been studied and discounted as possible sources.

Wedge 2 is radiometrically constrained to post-date Channel C3 fill, and we believe that Wedge 3 also pre-dates Channel C2. Consequently, two additional palaeoseismic events (events D and E) are interpreted between 1690 BC - 1400 BC (Channel C2) and 4460 BC - 4250 BC (radiocarbon dates combined before calibration) (Channel C3). Event E can be constrained to post-date Channel C3 fill (4460 BC - 4250 BC) and pre-date Wedge 2 (4050 BC - 3250 BC).

The oldest palaeoseismic event in the trench, represented by Wedge 1, pre-dates the bulk sample from the upper part of the undifferentiated alluvium (unit a) and postdates the buried soil below Wedge 1 (5730 BC - 5320 BC). Hence, this palaeoseismic event probably occurred some time between 5600 BC and 4400 BC (at the 2σ confidence limits).
3.2 Displacements

The buried channels exposed in Trenches 2 and 3 serve as piercing points of different ages and provide a means of determining a Holocene slip rate for the Serghaya fault. These channels depict quasi-linear traces and a northward sense of younging consistent with left-lateral transport of the downstream reaches from the mouth of the drainage. Although it is not possible to date the incision directly, the rapid cycle of incision and fill in Channel C3 based on the radiocarbon dates may characterize Channels 1 and 2, as well.

The buried channels correspond with episodic entrenchment of the alluvial apron, probably resulting from infrequent major storms in this semi-arid environment. The fill, consisting of sorted sand and gravel, is consistent with water-lain transport. Short-lived cycles of channel incision and subsequent filling are typical in arroyo development in the semi-arid regions of western North America where incision results from increased stream power, probably due to a short-lived, but relatively intense flow in the channel (Bull 1997). A concentrated flow (required to erode the channel) exiting the mouth of the drainage would probably follow a linear flow path, and this interpretation is consistent with the quasi-linear channel traces observed in the trenches and the present-day drainage. Hence, it seems reasonable to project the linear traces of the channels uphill to the fault zone in order to estimate the amount of displacement for each channel. Linear channels are also suggested by the exposures of channels C2 and C3 in both walls of trenches 2 and 3 (Fig. 5c). The channel mouth morphology and its position relative to the trench wall were mapped with a total station. The incised widths are estimated based on the bottom 50 cm of each channel, and displacements of 2.0 ± 0.5, 5.8 ± 0.3, and 10.2 ± 0.5 meters are estimated from the channels (see Figs. 10, 5c).

A plot of displacement versus age of the channel fill depicts an average slip rate of 1.4 ± 0.2 mm yr⁻¹ (Fig. 14). This slope was determined by linear regression of the displaced channel data with 2σ uncertainties. Although the sand and gravel in Channel C1 is dated to 680 - 780 AD, the timing of the displacement of this channel is constrained by historical records to post-date the channel by more than 1000 years (following our interpretation of an 18th century earthquake on the Serghaya fault). Hence, the slope of the line in Figure 14 was determined using the timing of displacement of C1 in the 18th century.

The displacements and event histories tie together as follows: (1) 2 meters of displacement associated with event A (the historical event and the small stream deflection), (2)
~4 meters of displacement associated with events B and C, and (3) ~4 meters of displacement associated with events D and E. The displacement for the last event appears to be roughly constant over the 6 - 7 km spanning the southern Zebadani Valley, as suggested by the minimum drainage deflections (Fig. 3). The individual slip for events B, C, D, and E cannot be estimated. However, each pair of events B/C (corresponding with the displacement of channel C2) and D/E (corresponding with the offset of channel C3) demonstrates an average left-lateral slip of ~2 meters per event. Hence, this section of the Serghaya fault might be characterized by similar slip in each of the last 5 paleoseismic events. Similar slip per event is also suggested by the similar thickness of colluvial wedges 1 - 5 (30 - 50 cm), although, as discussed by McCalpin (1996), colluvial wedge thickness is not always and uniquely related to uplift.

Constant slip for repeated earthquakes is also inferred on the southern section of the DSFS by Klinger et al. (2000b), as well as on strike-slip faults in California (e.g. Rubin & Sieh 1997; Sieh 1996; Lindvall et al. 1989). This co-seismic slip behaviour is typical for both the Uniform Slip (Sieh 1981) and Characteristic Earthquake (Schwartz & Coppersmith 1984) models of earthquake repetition. However, in order to discriminate between these two types of earthquake behaviour, additional locations along the 125 km long Serghaya fault need to be studied. For example, the Uniform Slip model involves a constant slip rate along the fault and frequent moderate earthquakes to compensate for along-strike variations in slip per event at a given location; the Characteristic Earthquake model allows a variable slip rate along the fault and infrequent moderate earthquakes. It should also be noted that other sections of the DSFS demonstrate variable displacement for repeated earthquakes (e.g., Ellenblum et al. 1996)

Applying published scaling laws relating slip to moment magnitude (e.g. Wells & Coppersmith 1994), 2 meters of slip corresponds with an earthquake of Mw ~ 7 - 7.2. On average, this portion of the Serghaya fault has experienced one such event every ~1300 years. Although in many cases, the time brackets on the individual palaeoseismic events are not well resolved, the available timing constraints are consistent with this mean return period. However, the actual recurrence intervals may vary significantly. For example, Wedge 2, which post-dates the penultimate event, is dated 170 BC - 20 AD, whereas the last event occurred in the early to mid 18th century. This implies that at least 1700 - 1900 years elapsed between these two events.

A time-predictable earthquake model uses the displacement of the last event and the slip rate to predict the time to the next earthquake, assuming that the fault fails at a critical stress
level (Shimazaki & Nakata, 1980). In the context of such an earthquake recurrence model, the slip rate and the palaeoseismic history (2.0 – 2.5 meters of slip in the last earthquake with a slip rate of 1.4 mm / yr\(^{-1}\)) suggest that there is probably not a slip deficit on this portion of the Serghaya fault. However, this is only a preliminary interpretation based on this one palaeoseismic investigation. Regardless of the lack of a slip deficit, consideration should be given to possible stress interactions between the Serghaya fault and the nearby Yammouneh or Roum faults.

4 TECTONIC IMPLICATIONS

Active strike-slip movement of the Serghaya fault contrasts with suggestions that strike-slip faulting within the restraining bend and northward have been rendered inactive as a result of an evolving regional stress field in the eastern Mediterranean region (e.g. Butler et al. 1997). A recent plate model for the Arabian and African plates based on GPS measurements (McClusky et al. 2003, in press) predicts the total motion of the Arabian plate relative to the African plate at this latitude to be ~6.8 mm yr\(^{-1}\) with an azimuth of about N25W -- i.e., 45° to the azimuth of the restraining bend. Primarily left-lateral slip on the Serghaya fault, striking N20E, suggests a regional partitioning of strain.

One simple geometrical model of strain partitioning in the restraining bend along the Dead Sea fault system is illustrated schematically in Fig. 15a. In this model, the plate motion is decomposed into 4.8 mm yr\(^{-1}\) of strike-slip along faults striking N20E in the restraining bend, as well as a similar magnitude of shortening perpendicular to the faults (Fig. 15a). In this case, the 1.4 ± 0.2 mm yr\(^{-1}\) of slip on the Serghaya fault only accounts for ~30% of total predicted strike-slip motion. Consequently, this implies that other strike-slip faults in the restraining bend, such as the Yammouneh fault, should be active in order to accommodate the remaining plate motion.

However, the Serghaya fault does not appear to re-connect with the transform (Figs 1 and 2), suggesting a slightly more complicated fault model. One possibility might involve the Serghaya fault acting as an oblique "back-stop" for active shortening within the adjacent Palmyride fold belt, perhaps along with the right-lateral Jhar fault north of the Palmyrides (Fig. 15b). In this case, the 1.4 ± 0.2 mm yr\(^{-1}\) of slip on the Serghaya fault may be used to infer from the geometry that NNW shortening in the Palmyrides accommodates approximately 1 mm yr\(^{-1}\) of the relative plate motion. The remaining 5.8 mm yr\(^{-1}\) of plate motion could be decomposed into...
4.1 mm yr\(^{-1}\) of strike-slip on N20E strike-slip faults (e.g. the Yammouneh fault), and a similar amount of shortening perpendicular to these faults.

Regardless of the general tectonic model for the restraining bend, the Serghaya fault seems insufficient to account for all predicted plate motion. Hence, multiple strike-slip faults imply more complicated scenarios for earthquake hazard assessments.

As noted by previous workers this structural configuration bears similarity to the "Big Bend" of the San Andreas fault system in southern California (e.g., Chaimov et al. 1990), which comprises several active fault branches, including both reverse and strike-slip faults. In addition, internal deformation of the North American plate is also significant -- although the major component of plate motion is accommodated by the San Andreas fault, studies have demonstrated that the Eastern California Shear Zone and the Basin and Range (e.g. Dokka & Travis 1990; Dickinson & Wernicke 1997) accommodate significant components of the total plate motion.

5 CONCLUSIONS

This study provides an initial view of the earthquake behaviour and active fault kinematics for the Serghaya fault, and these results depict recent tectonic activity that is not readily apparent in the instrumentally recorded seismicity alone. The Serghaya fault is active, and the total fault length and 2 – 2.5 meter displacements, combined with historical seismicity, suggest that the fault may be capable of generating large (M~7) earthquakes. This study also provides a first view of the earthquake recurrence history along the Serghaya fault. The results suggest a slip rate of about 1.4 mm yr\(^{-1}\), with an average of approximately 2 meters of slip per event at this location and a mean repeat time of about 1,300 years. However, the age control from the colluvial deposits is relatively limited for placing tight limits on the timing of past events, although these can be identified with loose constraints. Additional studies are needed to illuminate any fault-wide behaviour, such as fault segmentation, to distinguish between models of fault behaviour such as the Characteristic Earthquake and Uniform Slip models. Understanding the extent and magnitude of past ruptures can also provide critical input for modeling static stress interactions on nearby faults that can increase or decrease the probabilities of subsequent earthquakes.

Although this study has documented the inferred effects of large, surface rupturing earthquakes on the Serghaya fault, moderate earthquakes (M ~5 - 6) are also a concern for
seismic hazard assessments. The recurrence of moderate earthquakes can be difficult to assess using palaeoseismic techniques -- moderate earthquakes do not always produce a surface rupture, and when they do, slip is small and of limited spatial extent. However, moderate earthquakes, if relatively frequent, can also present a considerable hazard if the epicenters are located near cities like Damascus or Beirut. Eventual distinction of different models for earthquake behaviour, such as the Characteristic Earthquake (infrequent moderate earthquakes) versus Uniform Slip (relatively frequent moderate earthquakes) models, will assist in assessing the level of hazard posed by moderate earthquakes.

The results of this study demonstrate that the Serghaya fault is a significant element of this portion of the Arabian-African plate boundary. When placed in the context of Arabian-African relative plate motions, the slip rate and fault kinematics suggest that other structures must also be active within the restraining bend in order to accommodate the expected plate motion. Ongoing GPS observations and future geological studies should help clarify the kinematics of the restraining bend and the means by which it connects the two simpler sections of the Dead Sea fault system. This will ultimately contribute to a better understanding of the structural behaviour and evolution of continental transform systems.

ACKNOWLEDGEMENTS

The field investigation presented here benefited from significant logistical support provided by the Higher Institute of Applied Sciences and Technology (HIAST). G. Brew, Y. Radwan, I. Layous, H. Al-Najar, M. Daoud, C. Tabet, and M. Khawlie contributed additional assistance to the trench study. D. Seber provided helpful comments in the development of this manuscript. The late Dr. G. Bock provided constructive comments and support as the editor of GJI. We also thank S. Marco and A. Agnon as official reviewers of GJI for their helpful suggestions in revising the manuscript. Radiocarbon dating by PRIME Lab (Purdue University) was provided through seed project J019. This research was partially supported by NSF grants EAR-0106238 and NSF INT-9810510. M. Meghraoui was supported by CNRS-UMR 7516.
REFERENCES

McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter,

FIGURE CAPTIONS

Figure 1. Simplified topography and tectonic map of the northern Dead Sea fault system. Tectonic and physiographic features: SF = Serghaya fault, YF = Yammouneh fault, RF = Roum fault, JF = Jhar fault, AL = Anti Lebanon Mountains, PFB = Palmyride fold belt, BV = Bekaa Valley. Inset depicts the plate tectonic context of the Dead Sea fault system.

Figure 2. Shaded relief image depicting the gross morphology of the Serghaya fault. Faults and the main anticlinal hinges are shown. Geographic features: ZV = Zebadani Valley, H = Mt. Hermon, D = Damascus, B = Baalbek, A = Aarsal. See Fig. 1 for location.

Figure 3. Geology of the southern Zebadani Valley (Syria). See Fig. 2 for location. Stereonet depicts fault planes and associated striations from faulted late Pleistocene lake sediments. The dotted line depicts the catchment for the hillslope drainage at the trench site (white square). The white star denotes the excavation of the upper colluvial wedge described in Gomez et al. (2001). White discs denote small drainage deflections (values in meters), including the example shown in Fig. 4. Topographic contour interval = 50 meters.

Figure 4. An example of a small, displaced drainage crossing the Serghaya fault. The minimum offset is 2.3 - 2.5 meters. The view is facing west; see Fig. 3 for location.

Figure 5. (A) Map of trench site. 1 meter relative contours are based on mapping with a total station. See Fig. 3 for location. (B) Topographic profile and cross section illustrating composite fault scarp approximately 4.5 meters in height. (C) Enlarged map of the trench site depicting the positions of the present channel (C1) and the precise locations of the buried channels (C2 and C3). Solid black lines indicate where the buried channels were observed and dashed lines indicate where buried channels were inferred. The patterns are consistent with Figure 5a.

Figure 6. Photograph of the trench site facing SE. Note the position of the trench system relative to the fault scarp and the small drainage. See Fig. 3 for location.

Figure 7. Photo mosaic of the north wall of Trench 1.

Figure 8. Trench log for the northern wall of Trench 1, exposing colluvial wedges, undifferentiated alluvium, and late Pleistocene lake sediments. Calibrated radiocarbon ages are shown.

Figure 9. Photo of incised and filled channel exposed in Trench 2. Channel C3 is incised into the older alluvium (unit a) and filled with clast-supported cobble, gravel, and sand. White string grid has 1 meter spacing.

Figure 10. (A) Trench log for the east wall of Trench 2. A sequence of three incised and filled channels is shown, with a northward sense of younging. Black disks denote the positions of samples for radiocarbon dating. The profile above the trench log depicts the hillslope channel.
morphology east of the fault zone. The relative positions of the channel mouth and the buried channels were mapped using a total station. Apparent offsets of the buried channels are shown.

Figure 11. Schematic reconstruction of the past five palaeoseismic events indicated in Trench 1. Numbers correspond with colluvial wedges 2 - 6. Bold lines depict the most recent fault splay in each stage; dashed lines denote restored faults. ls = lacustrine sediment; a = undifferentiated alluvium.

Figure 12. Schematic block diagram illustrating the 3-dimensional relationships of the features exposed in the trenches. A stratigraphic tie between the filling deposit of Channel C2 with the down-slope equivalent of Wedge 4 can be observed.

Figure 13 Summary of events observed in the trenches and the interpreted palaeoseismic history of the Serghaya fault. Colluvial wedge deposits post-date palaeoseismic events. Stratigraphic ties provide additional constraint on the relative timing of events. Ages represent calendar corrected radiocarbon ages for give features (2σ uncertainties provided).

Figure 14. Plot of offset versus age for buried channels. The 2 meter displacement of the youngest channel corresponds with a historically documented earthquake in the early or mid 18th century. The slope of the linear fit is the minimum Holocene slip rate for the Serghaya fault.

Figure 15. Two simplified geometrical models for the restraining bend of the Dead Sea fault system and the role of the Serghaya fault. Predicted plate motion is based on the GPS-derived regional plate model of McClusky et al. (2003, in press). (A) Decomposing the predicted plate motion into N20E strike-slip fault and orthogonal shortening, the 1.4 mm yr\(^{-1}\) of slip on the Serghaya fault accounts for ~30% of the expected strike-slip movement on faults striking N20E. The orthogonal shortening would be accommodated in the Mt. Lebanon and/or Anti Lebanon Mountains. (B) An alternative model in which the Serghaya fault acts as an oblique back-stop behind the Palmyride fold belt and contributes to internal deformation of the Arabian plate. The remaining portion of Arabian-African plate motion may then be composed into strike-slip movement (N20E faults) and orthogonal shortening.
<table>
<thead>
<tr>
<th>Year</th>
<th>M</th>
<th>Affected Areas (in order of decreasing intensity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>198 BC</td>
<td>?</td>
<td>Lebanese coast, southern Syria</td>
</tr>
<tr>
<td>115 AD</td>
<td>?</td>
<td>northwest Syria</td>
</tr>
<tr>
<td>303 AD</td>
<td>~7.0</td>
<td>Lebanese coast, southern Syria</td>
</tr>
<tr>
<td>551 AD</td>
<td>7.0 – 7.5</td>
<td>Lebanese coast</td>
</tr>
<tr>
<td>747 AD</td>
<td>7.0 – 7.5</td>
<td>southern Bekaa Valley, southern Syria</td>
</tr>
<tr>
<td>847 AD</td>
<td>7.0 – 7.5</td>
<td>southwest Syria</td>
</tr>
<tr>
<td>991 AD</td>
<td>7.0 – 7.5</td>
<td>Bekaa Valley, Anti-Lebanon</td>
</tr>
<tr>
<td>1063 AD</td>
<td>~7.0</td>
<td>northern Lebanese coast, Syrian coast</td>
</tr>
<tr>
<td>1157 AD</td>
<td>7.0 – 7.5</td>
<td>northwest Syria, Ghab Valley</td>
</tr>
<tr>
<td>1170 AD</td>
<td>>7.5</td>
<td>northern Lebanon, Syrian coast</td>
</tr>
<tr>
<td>1202 AD</td>
<td>>7.5</td>
<td>Mt. Lebanon, Bekaa Valley, Hula Basin, Lebanese-Syrian coast</td>
</tr>
<tr>
<td>1705 AD</td>
<td>~7.0</td>
<td>Anti-Lebanon, Zabadani and Bekaa Valleys, Damascus, northern Lebanese coast</td>
</tr>
<tr>
<td>1759 AD</td>
<td>~7.4</td>
<td>Bekaa Valley, Anti-Lebanon, Golan Heights, Mt Lebanon, Damascus</td>
</tr>
<tr>
<td>1837 AD</td>
<td>7.0 – 7.5</td>
<td>western Lebanon, southern Bekaa Valley, Hula Basin</td>
</tr>
</tbody>
</table>

Table 2. Radiocarbon dates of relevant samples from Trenches 1 and 2 and nearby areas.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Method</th>
<th>Material</th>
<th>Sampled Layer</th>
<th>δ(^{13})C</th>
<th>Radiocarbon Age years B.P.</th>
<th>2σCalibrated Age Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS-1</td>
<td>AMS</td>
<td>charcoal</td>
<td>Quaternary lake sediment</td>
<td>-25.0</td>
<td>44630 ± 1570</td>
<td>n/a</td>
</tr>
<tr>
<td>T1-02Nd</td>
<td>AMS</td>
<td>charcoal</td>
<td>colluvium -- Wedge 5</td>
<td>-25.0</td>
<td>2060 ± 30</td>
<td>170 BC - 20 AD</td>
</tr>
<tr>
<td>T1-09N</td>
<td>AMS</td>
<td>seed</td>
<td>colluvium -- Wedge 6</td>
<td>-24.2</td>
<td>>Modern (122.8 ± 0.3 %)</td>
<td>post 1950 AD</td>
</tr>
<tr>
<td>T1-04S</td>
<td>AMS</td>
<td>seed</td>
<td>colluvium -- Wedge 6</td>
<td>-25.2</td>
<td>>Modern (111.4 ± 0.5 %)</td>
<td>post 1950 AD</td>
</tr>
<tr>
<td>T1-15S</td>
<td>AMS</td>
<td>seed</td>
<td>silty sand below Wedge 6</td>
<td>-24.1</td>
<td>>Modern (125.8 ± 0.3 %)</td>
<td>post 1950 AD</td>
</tr>
<tr>
<td>T2-05E</td>
<td>AMS</td>
<td>charcoal</td>
<td>sandy gravel -- Channel 3</td>
<td>-26.0</td>
<td>5510 ± 80</td>
<td>4540BC - 4160 BC</td>
</tr>
<tr>
<td>T1-03N</td>
<td>AMS</td>
<td>charcoal</td>
<td>silty sand below Wedge 6</td>
<td>(-25.0)</td>
<td>>Modern (103.9 ± 1.8%)</td>
<td>post 1650 AD</td>
</tr>
<tr>
<td>T2-10W</td>
<td>AMS</td>
<td>charcoal</td>
<td>sandy gravel -- Channel 3</td>
<td>(-25.0)</td>
<td>5450 ± 140</td>
<td>4600 BC - 3950 BC</td>
</tr>
<tr>
<td>T1-108S</td>
<td>AMS</td>
<td>charcoal</td>
<td>silty sand below Wedge 6</td>
<td>-27.3</td>
<td>>Modern (110.7 ± 0.5 %)</td>
<td>post 1950 AD</td>
</tr>
<tr>
<td>T2-15E</td>
<td>AMS</td>
<td>charcoal</td>
<td>sandy gravel -- Channel 1</td>
<td>-26.2</td>
<td>1354 ± 52</td>
<td>600 AD - 780 AD</td>
</tr>
<tr>
<td>T2-101W</td>
<td>AMS</td>
<td>charcoal</td>
<td>sandy gravel -- Channel 2</td>
<td>-25.4</td>
<td>3233 ± 57</td>
<td>1690 BC - 1400 BC</td>
</tr>
<tr>
<td>T2-101E</td>
<td>AMS</td>
<td>charcoal</td>
<td>sandy gravel -- Channel 3</td>
<td>-25.6</td>
<td>5492 ± 57</td>
<td>4460 BC - 4250 BC</td>
</tr>
<tr>
<td>T1-107S</td>
<td>AMS</td>
<td>charcoal</td>
<td>silty sand below Wedge 6</td>
<td>-27.7</td>
<td>>Modern (133.7 ± 0.5 %)</td>
<td>post 1950 AD</td>
</tr>
<tr>
<td>T3-07E</td>
<td>AMS</td>
<td>charcoal</td>
<td>sandy gravel -- Channel 3</td>
<td>-25.7</td>
<td>5540 ± 51</td>
<td>4500 BC - 4250 BC</td>
</tr>
<tr>
<td>T1-110Nbk</td>
<td>CONV</td>
<td>soil organics</td>
<td>colluvium -- Wedge 2</td>
<td>-25.7</td>
<td>4870 ± 160</td>
<td>4050 BC - 3100 BC</td>
</tr>
<tr>
<td>T1-104Sbk</td>
<td>CONV</td>
<td>soil organics</td>
<td>undifferentiated alluvium</td>
<td>-24.7</td>
<td>5280 ± 230</td>
<td>4700 BC - 3700 BC</td>
</tr>
<tr>
<td>T1-107Nbk</td>
<td>CONV</td>
<td>soil organics</td>
<td>soil below colluvium</td>
<td>-25.0</td>
<td>6590 ± 120</td>
<td>5730 BC - 5320 BC</td>
</tr>
</tbody>
</table>

Dating methods are AMS (accelerator mass spectrometer) and conventional (i.e., decay counting). Samples have been calibrated with OxCal 3.5 by Bronk Ramsey using the data set of Stuiver et al. (1998). Radiocarbon ages of >Modern are listed with the %Modern values. δ\(^{13}\)C values in parentheses indicate that the sample was too small for a δ\(^{13}\)C measurement and a value was assumed.
Figure 2
Gomez et al
Figure 3
Gomez et al.
Figure 4
Gomez et al
Figure 5
Gomez et al
Figure 5
Gomez et al.
Figure 6
Gomez et al

Figure 7
Gomez et al
plow zone

calcareous lacustrine sediments & gravels

silty-clay with scattered gravel: undifferentiated
red-brown alluvium

poorly sorted pebbles & gravel: colluvial wedge
calcareous lacustrine sediments & gravels

fine sand & silt, sparse gravel, with
interfingered colluvial wedge (6)

poorly sorted pebbles &
gravels: colluvial wedges

4050 BC - 3100 BC
4700 BC - 3700 BC
5730 BC - 5320 BC

170 BC - 20 AD

4050 BC - 3100 BC

4700 BC - 3700 BC

5730 BC - 5320 BC

170 BC - 20 AD

No vertical exaggeration

Figure 8
Gomez et al
Figure 10
Gom ez et al
present (after event A)

after event B

after event C

after event D

before event E

Figure 11
Gomez et al
Figure 12
Gomez et al.
Colluvial Wedge Deposition

Channel Incision / Fill

Interpreted Palaeoseismic Events

Event A

Event B

Event C

Event D

Event E

Event F

Calendar ages reflect 2σ uncertainties

Figure 13
Gomez et al
Figure 14
Gomez et al
Figure 15
Gomez et al

SF = Serghaya fault
YF = Yammouneh fault
JF = Jhar fault
PFB = Palmyride fold belt

6.8 mm yr⁻¹

fault motion
plate motion