Global Positioning System measurements of strain accumulation and slip transfer through the restraining bend along the Dead Sea fault system in Lebanon

Francisco Gomez, Gebran Karam, Mohamad Khawlie, Simon McClusky, Philippe Vernant, Robert Reilinger, Rani Jaafar, Charles Tabet, Kamal Khair, Muawia Barazangi

1Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211
2Department of Civil Engineering, Lebanese American University, Jbail, Lebanon
3Lebanese National Center for Remote Sensing, Beirut, Lebanon
4Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
5Lebanese National Council for Scientific Research, Beirut, Lebanon
6Hasbaya, Lebanon
7Institute for the Study of the Continents, Snee Hall, Cornell University, Ithaca, New York 14853

Abbreviated title: GPS Measurements in Lebanon

Corresponding Author: Francisco Gomez
Department of Geological Sciences
University of Missouri
Columbia, Missouri 65211
USA

phone: +1 573 882 9744
fax: +1 573 882 5458
e-mail: fgomez@missouri.edu

Total Number of Words (not including References): 2940
Summary

Approximately four years of campaign and continuous GPS measurements across the Dead Sea fault system in Lebanon provide direct measurements of interseismic strain accumulation along a 200-km-long restraining bend in this continental transform fault. Late Cenozoic transpression within this restraining bend has maintained more than 3,000 meters of topography in the Mount Lebanon and Anti-Lebanon ranges. The GPS velocity field indicates 4–6 mm/yr of relative plate motion is transferred through the restraining bend to the northern continuation of the Dead Sea fault system in northwestern Syria. Near-field GPS velocities are generally parallel to the major, left-lateral strike-slip faults, suggesting that much of the expected convergence across the restraining bend is likely accommodated by different structures beyond the aperture of the GPS network (e.g., offshore Lebanon and, possibly, the Palmyride fold belt in SW Syria). Hence, these geodetic results suggest a partitioning of crustal deformation involving strike-slip displacements in the interior of the restraining bend, and crustal shortening in the outer part of the restraining bend. Within the uncertainties, the GPS-based rates of fault slip compare well with Holocene-averaged estimates of slip along the two principle strike-slip faults: the Yammouneh and Serghaya faults. Of these two faults, more slip occurs on the Yammouneh fault, which constitutes the primary plate boundary structure between the Arabia and Sinai plates. Hence, the Yammouneh fault is the structural linkage that transfers slip to the northern part of the transform in northwestern Syria. From the perspective of the regional earthquake hazard, the Yammouneh fault is presently locked and accumulating interseismic strain.

Key Words: Crustal deformation, Dead Sea fault system, Global Positioning System (GPS), Fault motion, Neotectonics, Transform faults
Introduction

The central part of the Dead Sea fault system in Lebanon and southwestern Syria is a ~200 km long restraining bend that strikes 25 - 30 degrees from the main trend of the transform (Figure 1). Within the geodynamic framework of the eastern Mediterranean region, the left-lateral Dead Sea fault system (DSFS) is the continental transform boundary between the Arabian and Sinai plates (e.g., Freund et al. 1970; McKenzie 1972), accommodating the differential motion of those two plates as they converge and collide with Eurasia.

Although late Cenozoic strike-slip movements of the DSFS are well documented (e.g., Quennell 1958; Freund et al. 1970), some debate has persisted over the past decade concerning the present-day activity of the northern DSFS and whether or not plate motion is presently transmitted through the restraining bend (Girdler 1990; Butler et al. 1998). This debate was motivated, primarily, by the apparent lack of instrumentally recorded seismicity along the restraining bend and the northern portion of the transform in NW Syria. Specific questions concerning the DSFS include: Is strain presently accumulating within the restraining bend? If so, how is crustal deformation distributed? How do short-term (geodetic) estimates of fault slip compare with long-term (late Quaternary) estimates?

Whether or not the central DSFS is an active restraining bend also pertains to broader questions of how large restraining bends in major transcurrent fault systems develop. Faults within restraining bends typically have orientations that are not optimal with regard to the regional plate motions (i.e., the boundary forces). Yet restraining bends persist, often involving increased structural complexity compared with the rest of the fault system.

This “Lebanese” restraining bend compares in scale to other large restraining bends, such as the Big Bend along the San Andreas fault system in southern California. Late Cenozoic transpression within the Lebanese restraining bend has uplifted the Mount Lebanon and Anti Lebanon ranges to elevations in excess of 3,000 meters. Similar to the San Andreas fault system within the Big Bend, the single trace of the southern DSFS splay into several structures within the Lebanese restraining bend (Walley 1988) (Figure 2): The Yammouneh, Serghaya, Rachaya, Roum, and Akkar faults. Of those, the Yammouneh fault appears to be the only through-going structure that connects the southern and northern parts of the DSFS. The Serghaya fault, the other major NNE-SSW strike-slip fault, seems to terminate in the northern Anti Lebanon range (Gomez et al. 2003; Gomez et al. 2006). Two faults striking oblique to the transform, the Roum
fault in the south and the Akkar fault in the north, appear to serve as the structural linkages between the strike-slip faults of the restraining bend and horizontal shortening of the Mount Lebanon range (e.g., Gomez et al. 2006; Nemer & Meghraoui 2006).

Geodetic estimates of present-day plate motion along the DSFS are relatively slow at 4 – 6 mm/yr. (e.g., Wdowinski et al. 2004; Mahmoud et al. 2005). This is consistent with longer return periods (500 – 1000 years) for strike-slip earthquakes within the Lebanese restraining bend (e.g., Gomez et al. 2003; Meghraoui et al. 2003; Daeron et al. 2005). Despite a general seismic quiescence at the present time, historical records document numerous large earthquakes within the restraining bend, most notably in 551 AD, 1202 AD, 1759 AD, and 1837 AD (e.g., Sbeinati et al. 2005). Hence, understanding the active crustal deformation, particularly in terms of strain accumulation and the earthquake cycle, is critical to improving the estimates of the regional earthquake hazard.

Recent paleoseismic and neotectonic studies within the Lebanese restraining bend have helped constrain the late Pleistocene / Holocene kinematics of several major faults: Purely strike-slip displacement is documented along the Yammouneh fault (4 – 6 mm/yr) and Serghaya fault (1 – 1.5 mm/yr) (Gomez et al. 2003; Daeron et al. 2004; Gomez et al. 2007). Along the Roum fault, a strike-slip rate of 1 mm/yr in the south grades into increased dip slip toward the northern end of the fault (Nemer & Meghraoui 2006).

This study reports the initial GPS velocity field for the Lebanese restraining bend along the Dead Sea fault system. The results provide permit kinematic modeling of the restraining bend and quantify the accumulation of interseismic strain along the Yammouneh fault.

GPS Measurements and Data Processing

The regional GPS network used in this study includes one local continuous GPS station (LAUG) with 14 survey monuments (Figure 2). Monumentation at the 14 survey sites consisted of 10 cm steel pins cemented into bedrock. Sites were distributed about Lebanon in order to facilitate 2-dimensional analysis of the resulting velocities. The campaign sites were repeatedly measured during 5 survey campaigns between spring 2002 and fall 2005. In each campaign, sites were observed for a minimum of 24 hours using Trimble 5700 receivers with Zephyr.
GPS Measurements in Lebanon
Gomez et al.

geodetic antennae atop fixed-height antenna masts in order to reduce uncertainty owing to antenna setup.

GPS data were processed in a two-step procedure using the GAMIT/GLOBK software (Herring et al. 1997; Dong et al. 1998; King & Bock 1998). In the first step, loosely constrained estimates of station coordinates, orbital and Earth orientation parameters, and atmospheric zenith delays were determined from raw GPS observables using GAMIT. Data from the Lebanon GPS network were analyzed along with raw GPS data from other continuously operating GPS stations in the region. Subsequently, a global Kalman filter (GLOBK) was applied to the combined, loosely constrained solutions and their associated covariances in order to estimate a consistent set of station coordinates and velocities. As part of this second step, a 6 parameter transformation was estimated by minimizing the horizontal velocities of 49 globally distributed IGS stations with respect to the IGS00 realization of the ITRF 2000 no-net-rotation reference (NNR) frame. A “random walk” noise of 1 mm / √yr was also assumed in the final velocity estimation.

After stabilizing the reference frame, the site velocities were resolved to an Arabian-fixed reference frame, which facilitates assessing the local deformation. Velocities (in NNR and Arabia-fixed reference frames) for the sites around the Lebanese restraining bend are provided in Table 1.

Results and Modeling

Figure 2 depicts the resulting velocity field around the Lebanese restraining bend. Uncertainties for the resulting velocities are typically less than 1 mm/yr (1 sigma). In the Arabia-fixed reference frame shown in Figure 2, the sites along the Lebanese coast demonstrate SSW motion of the Sinai plate relative to Arabia. South of the restraining bend, the velocities rotate to a more southward direction, maintaining their fault-parallel orientation.

Within the central part of the restraining bend, velocity variations along a WNW-ESE profile (i.e., perpendicular to the NNE-SSW strike of the Yammouneh and Serghaya faults, see Figure 2) permit an initial kinematic assessment. The profiles in Figure 3 decompose the velocities into motions parallel and perpendicular to the Yammouneh and Serghaya faults. These profiles deliberately exclude GPS survey sites at the extremities of the restraining bend and those which might be complicated by the obliquely striking Roum fault. The velocities parallel to the
transform (Figure 3a) show a progressive increase in southward velocity from east to west – a pattern that is generally consistent with basic models of elastic strain accumulation (e.g., Savage & Burford 1973). In addition to this strike-slip deformation, the fault-normal components of displacement (Figure 3b) suggest up to 2 mm/yr of motion (i.e., shortening) between sites in the Anti Lebanon (TFEL and ARSL) and the continuous station along the Lebanese coast (LAUG).

An initial, quantitative assessment of the geodetic slip rate is based on a 1-dimensional elastic dislocation model of a locked fault. Following Savage & Burford (1973), this profile model assumes an infinitely long strike-slip fault and expresses the station velocity, \(b \), as a function of the long-term slip rate (\(V \)), fault locking depth (\(D \)), and distance from the fault (\(x \)):

\[
b = \left(\frac{V}{\pi} \right) \tan^{-1} \left(\frac{x}{D} \right).
\]

(1)

Owing to the size of the uncertainties relative to the velocities, present observations, warrant only a single fault model (i.e., the Yammouneh fault). Despite the simplifications and assumptions, this analytical model permits assessing a range of values of fault slip rates and locking depths consistent with the GPS data using a grid search. The 1-sigma contour shown in Figure 3c is based on a Monte Carlo simulation to assess the noise level in the data (e.g., Sandvol & Hearn 1994). As demonstrated in Figures 3a and 3c, the entire range of geological slip estimates (3.5 – 6.5 mm/yr) can be modeled to fit nearly all of the velocities, with locking depths of 8 to 25 km. As shown in Figure 3c, the peak of the probability distribution corresponds with a slip rate of 4.4 mm/yr and a locking depth of 13 km.

A more appropriate elastic model and robust estimate of the fault slip rate involves 2-dimensional blocks bounded by faults of finite lengths, rather than a 1-dimensional profile. This modeling follows the methodology of Meade & Hager (2005), and considers the spatial variations in the velocity field due to fault geometry, and the effect of block rotations that are not accounted for in 1-D models and can both significantly impact deduced slip rates. In this approach, an optimal fit between plate motion, fault slip, and GPS velocities is determined using a linearized least squares inverse method. In our 2-dimensional modeling, we assume a fault locking depth of 15 km because present uncertainties preclude solving for this additional parameter. Furthermore, the anticipated ~1.5 mm/yr of slip along the Serghaya fault is less than the 2-sigma uncertainties for the present results. Hence, the present block model is simplified to a single fault bend.
The residual fit to the optimal model is shown in Figure 4, along with derived components of strike-slip and fault-normal movement. Within the restraining bend, a left-lateral slip rate of 3.8 ± 0.3 mm/yr (formal uncertainty reflecting only data fit and not uncertainties in fault parameters) is inferred, along with 1.6 ± 0.4 mm/yr of convergence across the fault. South of the restraining bend, a slip rate of 4.0 ± 0.3 mm/yr is accompanied with a small component of extension (0.8 ± 0.3 mm/yr), whereas north of the restraining bend, 4.2 ± 0.3 mm/yr of strike-slip is accompanied by an insignificant component (0.2 ± 0.5 mm/yr) of convergence across the DSFS. As previously noted, late Pleistocene / Holocene slip rates along the Yammouneh fault suggest a slip rate of $3 - 6$ mm/yr, and the block model is consistent with the lower end of this range.

Discussion

Our GPS velocities conclusively demonstrate the present-day accumulation of strain along left-lateral faults in central and northern Lebanon. Furthermore, the velocity field yields insight into the kinematics of slip transfer through this restraining bend. Specifically, the velocity field demonstrates: (1) the predominance of strike-slip faulting inside the restraining bend, and (2) less shortening than is expected from plate motions. These observations are consistent with regional strain partitioning that involves strike-slip displacements in the core of the restraining bend, and crustal shortening in the outer part of the restraining bend.

The velocity vectors in Figure 2 bend parallel to the major strike-slip faults through the restraining bend. This is well demonstrated by the northward change in the orientations from BSHM (south of the restraining bend) to JIYE and LAUG (within the restraining bend). With the near-field constraints, the elastic block model suggests rates of strike-slip faulting that are similar inside and outside the restraining bend – i.e., the rates of strike-slip do not decrease significantly as might be expected from a simple, geometric decomposition of plate motion into slip perpendicular and parallel to the restraining bend (e.g., Gomez et al. 2003).

Our elastic block model suggests about 1.6 mm/yr of convergence across the restraining bend – nearly half of the convergence compared with the regional block model of Reilinger et al. (2006). The model of Reilinger et al. (2006) constrained the motion along the Dead Sea fault system solely with continuous GPS stations (primarily in the far-field), whereas our model
includes additional survey sites in the near-field of the restraining bend. We suggest this
difference may, in part, reflect the fact that the GPS stations in Lebanon do not measure the full
convergence, and this may bias the block model.

In an analogous study of the Big Bend along the San Andreas fault system, Lisowski et al. (1991) concluded that the convergent component across a restraining bend seems to be
accommodated across a zone with a width comparable to the length of the bend. Applying this
to the Lebanese restraining bend suggests that sites along the Lebanese coast would not be
expected to demonstrate the total convergent component of motion – some of convergence may
be accommodated offshore, as suggested by recent studies (e.g., Briais et al. 2004)).

Additionally, seismicity in the Palmyride fold belt suggests that some of the shortening
associated with the Lebanese restraining bend may be accommodated by internal deformation of
the northern Arabian plate (e.g., Chaimov et al. 1990). Hence, owing to the low rate of
convergence across the Lebanese restraining bend and the width of the zone over which the
elastic strain accumulates, we believe that measurement of the full convergence may be below
the detection threshold of our current GPS observations.

Although the residuals for the block model are smaller than the uncertainties, an
apparently systematic westward residual motion may reflect the need for a more complicated
model involving reverse faults to accommodate WNW-ESE directed crustal shortening.
Alternatively, a dip on the Yammouneh fault could be added to accommodate plate motion with
oblique slip. However, landforms offset by the Yammouneh fault demonstrate only strike-slip
displacements (e.g., Daeron et al. 2004; Gomez et al. 2007) – therefore, shortening perpendicular
to the sub-vertically dipping Yammouneh fault is likely accommodated by a different structures.

These GPS measurements, as with recent paleoseismic studies, unambiguously refute
suggestions that the plate boundary is located offshore to the west (e.g., Butler et al. 1998). The
DSFS within the restraining bend is active despite the significant obliquity of plate motion
relative to the restraining bend. Hence, changes in relative motion between the Arabian and
Sinai plates (Garfunkel 1981; Butler et al. 1998) did not cause a change in this plate boundary as
suggested by Butler et al. The persistence of the restraining bend implies that the DSFS is
sufficiently weaker than the surrounding continental crust such that it is mechanically preferable
to reactivate the transform, rather than develop new faults.
Conclusions

The GPS results presented herein provide direct geodetic measurement of present-day fault slip transferring through the Lebanese restraining bend. The GPS velocities maintain their fault parallel orientation along the restraining bend indicating that regional compression required by Sinai-Arabia relative plate motion is accommodated by structures other than the main through-going Yammouneh strike-slip fault. Fault slip rates deduced from simple elastic models constrained by the GPS results are consistent with the total 4 – 6 mm/yr of relative plate motion between the Arabia and Sinai plates, and generally consistent with the lower range of geological estimates of slip rates along the Yammouneh fault. The displacement field suggests that the Yammouneh fault accommodates most of the expected strike-slip motion – hence, the DSFS (and specifically the Yammouneh fault) represents the main Sinai-Arabia plate boundary.

The GPS measurements also yield initial constraints on near-field deformation around the northern Dead Sea fault system. The near-field velocities suggest that the Yammouneh fault is presently accumulating strain. Hence, the apparent lack of present-day seismicity is likely a reflection of the slow rates of strain accumulation about a locked fault system. These results reinforce concerns about earthquake potential of the Yammouneh fault, which has a historical record of producing large earthquakes (M ~ 7.5) (Sbeinati et al. 2005).

Acknowledgements

This research has been supported in part by NSF grants EAR-0439021 to Missouri, NSF EAR-0439807 to MIT, and EAR-0106238 to Cornell University. Tom Herring and Bob King provided guidance with data processing. We acknowledge the support of the Lebanese American University administration with maintenance of the continuous GPS station. Field assistance was provided by Chadi Abdallah, Chris Boujaoudi, Ihab Jomaa, Jihad Shuman, and Amin Shaban. This manuscript also benefited from helpful discussions with Eric Sandvol and Tony Nemer.
References Cited

Table 1. Velocities of GPS sites shown in Figure 2

<table>
<thead>
<tr>
<th>Site</th>
<th>Long</th>
<th>Lat</th>
<th>Vel E</th>
<th>Vel N</th>
<th>Vel E</th>
<th>Vel N</th>
<th>σE</th>
<th>σN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSL</td>
<td>36.467</td>
<td>34.174</td>
<td>22.21</td>
<td>5.33</td>
<td>-1.66</td>
<td>0.22</td>
<td>0.94</td>
<td>0.91</td>
</tr>
<tr>
<td>HRML</td>
<td>36.369</td>
<td>34.412</td>
<td>20.37</td>
<td>3.65</td>
<td>-3.33</td>
<td>-1.42</td>
<td>0.91</td>
<td>0.85</td>
</tr>
<tr>
<td>UDMC</td>
<td>36.285</td>
<td>33.510</td>
<td>24.69</td>
<td>3.47</td>
<td>0.37</td>
<td>-1.57</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>TFEL</td>
<td>36.235</td>
<td>33.860</td>
<td>19.71</td>
<td>5.16</td>
<td>-4.37</td>
<td>0.13</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>BRKA</td>
<td>36.143</td>
<td>34.194</td>
<td>22.03</td>
<td>3.66</td>
<td>-1.81</td>
<td>-1.34</td>
<td>0.80</td>
<td>0.77</td>
</tr>
<tr>
<td>HABT</td>
<td>36.084</td>
<td>34.461</td>
<td>21.22</td>
<td>4.18</td>
<td>-2.43</td>
<td>-0.79</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>ANJR</td>
<td>35.922</td>
<td>33.740</td>
<td>22.03</td>
<td>3.63</td>
<td>-2.12</td>
<td>-1.29</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>ADAS</td>
<td>35.899</td>
<td>34.466</td>
<td>22.23</td>
<td>2.92</td>
<td>-1.40</td>
<td>-1.99</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>HZRT</td>
<td>35.880</td>
<td>33.859</td>
<td>21.43</td>
<td>4.52</td>
<td>-2.63</td>
<td>-0.38</td>
<td>0.82</td>
<td>0.78</td>
</tr>
<tr>
<td>FRYA</td>
<td>35.829</td>
<td>34.015</td>
<td>21.97</td>
<td>2.70</td>
<td>-1.98</td>
<td>-2.19</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>ELRO</td>
<td>35.771</td>
<td>33.182</td>
<td>23.11</td>
<td>3.60</td>
<td>-1.42</td>
<td>-1.26</td>
<td>0.61</td>
<td>0.60</td>
</tr>
<tr>
<td>HAYT</td>
<td>35.762</td>
<td>34.089</td>
<td>19.44</td>
<td>0.71</td>
<td>-4.46</td>
<td>-4.15</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>MCHK</td>
<td>35.761</td>
<td>33.516</td>
<td>20.92</td>
<td>2.76</td>
<td>-3.38</td>
<td>-2.10</td>
<td>0.78</td>
<td>0.77</td>
</tr>
<tr>
<td>LAUG</td>
<td>35.674</td>
<td>34.115</td>
<td>21.60</td>
<td>1.06</td>
<td>-2.27</td>
<td>-3.77</td>
<td>0.86</td>
<td>0.87</td>
</tr>
<tr>
<td>Jzin</td>
<td>35.579</td>
<td>33.545</td>
<td>21.70</td>
<td>1.40</td>
<td>-2.57</td>
<td>-3.40</td>
<td>0.77</td>
<td>0.76</td>
</tr>
<tr>
<td>JIYE</td>
<td>35.401</td>
<td>33.641</td>
<td>20.90</td>
<td>3.03</td>
<td>-3.29</td>
<td>-1.70</td>
<td>0.78</td>
<td>0.79</td>
</tr>
<tr>
<td>RBDA</td>
<td>35.162</td>
<td>33.149</td>
<td>21.43</td>
<td>0.55</td>
<td>-3.09</td>
<td>-4.10</td>
<td>0.87</td>
<td>0.89</td>
</tr>
<tr>
<td>KABR</td>
<td>35.145</td>
<td>33.023</td>
<td>22.70</td>
<td>1.45</td>
<td>-1.91</td>
<td>-3.19</td>
<td>0.61</td>
<td>0.60</td>
</tr>
<tr>
<td>BSHM</td>
<td>35.023</td>
<td>32.779</td>
<td>24.56</td>
<td>0.63</td>
<td>-0.21</td>
<td>-3.97</td>
<td>0.69</td>
<td>0.68</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Regional tectonic map of the Dead Sea fault system. Also shown are the relative plate motions (Arabia vs. Sinai) predicted by Reilinger et al. (2006). Abbreviations: EAF = East Anatolian fault, NAF = North Anatolian fault.

Figure 2. Map showing general structure of the Lebanese restraining bend. GPS velocities for the network used in this study are also shown in an Arabia-fixed reference frame (2-sigma uncertainties). Abbreviations for some key tectonic features: RF = Roum fault, RaF = Rachaya fault, AF = Akkar fault, & PFB = Palmyride fold belt. Box denotes the swath encompassed by the profiles in Figure 3.

Figure 3. Plots showing GPS velocities (a) parallel and (b) perpendicular to the Yammouneh fault across the central part of the Lebanese restraining bend (positive N and E, respectively). The fault parallel velocities also include predicted velocities for different elastic dislocation models (i.e., combinations of locking depth and slip rate). The locations of the Yammouneh (solid) and Serghaya (dashed) faults are shown, although the model in 3a only includes the former. See Figure 2 for location. (c) A plot depicting the 1-sigma confidence limits on slip rate and locking depth. Confidence limits are based on a grid search approach and a Monte Carlo simulation to estimate the noise level in the data. The peak of the probability distribution corresponds with a slip rate of 4.4 mm/yr and a locking depth of 14 km.

Figure 4. Map depicting elastic block model of a bend along a single fault trace. Strike-slip and fault-normal components of slip are shown for each segment. Heavy red lines denote fault segments under extension, and heavy blue lines denote fault segments with orthogonal shortening. Residuals of the velocities (mm/yr) to the best model and 2-sigma uncertainties are also shown.
Figure 3
Gomez et al.
Figure 4
Gomez et al.