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ABSTRACT

The unique tectonic setting of the Oman Mountains and the Semail Ophiolite, together
with ongoing hydrocarbon exploration, have focused geological research on the
sedimentary and ophiolite stratigraphy of Oman.  However, there have been few
investigations of the crustal-scale structure of the eastern Arabian continental margin.  In
order to rectify this omission, we made a 255-km-long, southwesterly oriented crustal
transect of the Oman Mountains from the Coastal Zone to the interior Foreland via the
3,000-m-high Jebel Akhdar.  The model for the upper 8 km of the crust was constrained
using 152 km of 2-D seismic reflection profiles, 15 exploratory wells, and 1:100,000- to
1:250,000-scale geological maps.  Receiver-function analysis of teleseismic earthquake
waveform data from three temporary digital seismic stations gave the first reliable
estimates of depth-to-Moho.  Bouguer gravity modeling provided further evidence of
depths to the Moho and metamorphic basement.

Four principal results were obtained from the transect.  (1) An interpreted mountain root
beneath Jebel Akhdar has a lateral extent of about 60 km along the transect.  The depth-
to-Moho of 41 to 44 km about 25 km southwest of Jebel Akhdar increased to 48 to 51 km
on its northeastern side but decreased to 39 to 42 km beneath the coastal plain farther to
the northeast.  (2) The average depth to the metamorphic basement was inferred from
Bouguer gravity modeling to be 9 km in the core of Jebel Akhdar and immediately to the
southwest.  A relatively shallow depth-to-basement of 7 to 8 km coincided with the Jebel
Qusaybah anticline south of the Hamrat Ad Duru Range.  (3) Based on surface, subsurface,
and gravity modeling, the Nakhl Ophiolite block extends seaward for approximately
80 km from its most southerly outcrop.  It has an average thickness of about 5 km, whereas
ophiolite south of Jebel Akhdar is only 1 km thick.  The underlying Hawasina Sediments
are between 2 and 3 km thick in the Hamrat Ad Duru Zone, and 2 km thick in the Coastal
Zone.  (4) Southwest of Jebel Akhdar, reactivated NW-oriented strike-slip basement faults
that deformed Miocene to Pliocene sediments were inferred from the interpretation of
seismic reflection profiles.

INTRODUCTION

Location and Tectonic Setting

The study area in northern Oman (Figure 1) includes part of the eastern margin and foreland of the
Arabian Plate.  Tectonically, the most prominent feature is the Oman Mountains, also known as the
Hajar Mountains, that have a length of about 700 km, a width varying between 40 and 130 km, and
elevations of up to 3,000 m above sea level.

Plate boundaries of several different types delineate the Arabian Plate (Figure 1).  In the west, a divergent
boundary extending through the Red Sea and into the Gulf of Aden marks stages of early continental
rifting (northern Red Sea) to the final stages of development of a mature oceanic lithosphere (southern
Red Sea and Gulf of Aden).  In the northwest, the sinistral Dead Sea transform fault system separates
the Arabian Plate from the Sinai and Levantine subplates of the African Plate.  The northern and the
northeastern boundaries are continent-continent collision zones between the Arabian and the Eurasian
plates along the Bitlis and the Zagros sutures.  The Zagros suture continues south and transforms into
the continent-oceanic Makran subduction zone.  The Owen and Murray transform faults mark the
southeastern boundary of the Arabian Plate with the Indian Plate.
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Previous Geophysical Studies

Only a few geophysical studies have been made of the eastern Arabian margin and continental crust
in Oman.  That by Manghnani and Coleman (1981) was based on 2-D Bouguer gravity modeling and
gave an estimate for the average crustal thickness of about 40 km, with a maximum thickness of about
43 km below Saih Hatat.  Recent work by Ravaut (1997) and Ravaut et al. (1997) provided an estimate
for the average crustal thickness of about 43 km on the eastern margin of Arabia and a maximum
thickness of about 47 km beneath the Oman Mountains.  Their studies were based primarily on the
modeling of Bouguer gravity data together with limited subsurface information and constraints.

GEOLOGIC SETTING

Five tectonic sequences are recognized in Oman (Figure 2).  They are: (1) pre-Permian, (2) the Hajar
Supergroup, (3) the Allochthonous Sequence (Semail Ophiolite and Hawasina Sediments), (4) the Aruma
Group, and (5) Tertiary Cover Sequence.

Rifting events that began in the Precambrian/Cambrian and Early Permian led to the development of
the distinctive sequences of the pre-Permian (late Proterozoic to Early Permian) alternating clastics
and carbonates, and the Hajar Supergroup (Late Permian-mid Cretaceous) composed predominantly
of marine carbonates.

The emplacement of Late Cretaceous ophiolites was one of the most important tectonic events to have
affected the eastern margin of the Arabian Plate (Glennie et al., 1973; Boudier and Coleman, 1981;

Figure 1: Simplified plate tectonic setting of the Arabian Plate.  Oil (green) and gas (red) fields are
shown.  Base map from Sharland et al. (2001); plate motion after Kensaku Tamaki, Ocean Research
Institute, University of Tokyo [http://manbow.ori.u-tokyo.ac.jp].
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Figure 2: Geologic
column of northern
Oman showing major
sedimentary groups
(ARUMA) and key
formations (Muti),
and major tectonic
events that have
affected the eastern
Arabian margin and
surrounding region.
Modified from
Naylor and Spring
(2001) and Le Métour,
Mitchel et. al. (1995).
Arabian Plate (AP)
tectonostratigraphic
megasequence
boundaries from
Sharland et al. (2001).
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Coleman, 1981; Lippard, 1983).  This tectonic event led to the emplacement of the Allochthonous
Sequence consisting of the 10- to 12-km-thick Semail Ophiolite (Shelton, 1990) and deep oceanic and
shallow-marine sediments of the Mesozoic Hamrat Ad Duru and Sumeini groups, respectively.  The
emplacement event spanned the Cenomanian to Coniacian stages (Hopson et al., 1981; Pallister and
Hopson, 1981; Boudier et al., 1985; Nicolas et al., 1996; and Searle and Cox, 1999).  Bechennec et al.
(1995) recorded the ophiolite advance in the foreland region.  In this paper, we refer to both the Hamrat
Ad Duru and Sumeini groups as the Hawasina Sediments.  Units of the Muti Formation deposited
during the Turonian-Coniacian/Santonian mark the transition from a passive continental margin to a
foreland basin (Robertson, 1987; Bechennec et al., 1995).

The syntectonic Aruma Group (Fiqa Formation) was deposited during the Campanian to Maastrichtian.
In this study, we considered the Fiqa and Muti formations separately when establishing stratigraphic
relationships, but jointly as the Aruma Group when establishing regional lateral continuity (Figures
2 and 4).  Finally, the post-emplacement period was followed by the deposition of the Tertiary (Tertiary
and Quaternary) cover rocks, and the Miocene Zagros collision event.

Two prominent domal structures in the Oman Mountains are the 3,000-m-high Jebel Akhdar, and Saih
Hatat (Figure 3).  They provide a window onto the stratigraphy of the pre-Permian and Hajar
Supergroup sequences and have been intensively investigated with regard to the timing and mechanism
of deformation.  Several alternative models have been proposed.  One model is of a fault-bend fold
style of deformation (e.g., Cawood et al., 1990; Hanna, 1990) but the proposed geometry and the
existence of the fault-bend fold are controversial.  Le Métour, Bechennec and Roger (1995) concluded
that the structures of Jebel Akhdar and Saih Hatat were probably inherited from Late Permian horst-
and-grabens at the edge of the continental shelf.  Mount et al. (1998) suggested that Jebel Akhdar was
the result of a compressional event that began in the Oligocene and involved a high-angle reverse
fault (a fault-propagation fold) below the southern limb of the mountain.  We found that the present-
day structure of Jebel Akhdar could not be described by a single deformation style or by a single
event, but was the result of the interplay of various multiple events.

CRUSTAL TRANSECT

The main objective of our study was to construct a crustal-scale transect across the eastern Arabian
margin, from the Coastal Zone, through the Oman Mountains, and into the interior Foreland.
Geographically, the transect starts offshore, crosses the coastal plain and the Jebel Akhdar mountain
range in a southwesterly direction, and ends in the interior of Oman, southeast of the Natih and
Fahud structures (Figure 3).  The multidisciplinary approach we used integrated data and results
from the following sources: (1) seismic reflection and well-data interpretation; (2) earthquake receiver
function analysis; and (3) Bouguer gravity models.  We used 2-D seismic reflection profiles and well
data to constrain the upper 8 km of the crust, the receiver function to infer depth-to-Moho at three
locations, and Bouguer gravity modeling to further constrain the lateral extent of the Moho and to
infer the depth to the metamorphic basement.

We divided the transect into four structural zones from north to south as follows:

(1) The Coastal Zone (and offshore area) north of Jebel Akhdar.
(2) The Mountain Zone, corresponding to the Jebel Akhdar range.
(3) The Hamrat Ad Duru Zone south of Jebel Akhdar, which has the most intensive surface

deformation within the Hawasina Sediments.
(4) The Interior Zone, which shows minimal surface deformation south of Jebel Qusaybah

(see Figure 3).

We grouped the Interior Zone and Hamrat Ad Duru Zone as the Foreland, and the Mountain Zone
and Coastal Zone as the Hinterland.
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Seismic Reflection and Well Analysis

Data
Data used in the seismic interpretation consisted of 152 km of 2-D reflection profiles along the transect
(Figure 3), 100 km of which were in digital form and 52 km were analog paper copies.  Seismic reflection
data processing involved depth conversion of the 2-D seismic profiles using stack and migration
velocities.  These methods were also used to perform line-depth conversion on the analog data.  Data
from 15 exploratory wells were used to identify and correlate with stratigraphic units mapped from
the seismic reflection profiles (Figure 3).  Well data consisted of information on formation tops, age,
lithology, and biostratigraphy prepared by various oil companies for exploration purposes.  We also
had available the 1:100,000-scale and 1:250,000-scale geologic maps of Oman (Bechennec et al.,
1986a, b; Beurrier et al., 1986; Chevrel et al., 1992; Rabu et al., 1986; Wyns et al., 1992) from which to
construct a geologic cross-section.  The maps provided lithological, age, and—most importantly—dip
information for the Jebel Akhdar range where no seismic or exploratory well information was available.

Methods
Seismic reflection profiles directly on the transect gave the most complete coverage in the Interior
Zone and the Coastal Zone.  Seismic correlation and interpretation provided important information
on the stratigraphic and structural relations of the Hajar Supergoup and the overlying sequences.  We
have limited confidence in the correlation of the pre-Permian Sequence at depths below 3 sec two-way

Figure 4: Well-log correlation diagram:  sonic velocities as black lines and interval seismic velocities
in green.  Seismic interval velocities overlain on SD-1 and JKH-2 were obtained from lines S50295,
and IUL0001, respectively (see Figure 3).  Blue numbers are the averaged velocities for designated
intervals.
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travel time (TWT) that corresponded approximately to the top of the Lower Cambrian Huqf Group.
The top of metamorphic basement was almost impossible to identify in the Interior, Hamrat Ad Duru,
and Coastal zones.  Depth-converted time sections using interval stack and migration velocities showed
in some cases a depth difference of about 200 to 300 m at the 1 sec TWT level, and deeper levels
(Figure 4).

Information from wells was used to correct the depth-converted seismic sections wherever wells
coincided with seismic lines.  Where this was not possible, we made sure that the depth-converted
seismic section correlated with nearby wells and with wells across the transect.  Of the well on or near
to the crustal transect, only JKH-2 and SD-1 provided sonic velocity data, but to a maximum depth
about 1 km ( Figure 4).  This deficiency prevented us from further comparing depth-conversion velocities
with sonic-velocity data from well logs.  Wells DA-7 and ML-1, located respectively 150 km and 100
km west of the transect, provided sonic velocity information for the whole Hajar Supergroup and
were important in approximating depth conversion differences with migration and stack velocities
(Figure 4).  The sonic velocity of the upper part of the Hajar Supergroup (Figure 4), marked by top
Natih and base Jurassic, was 4,700 m/sec (well DA-7) and 5,120 m/sec (well ML-1), respectively.  The
discrepancy was attributed to the lateral thickness variation of some lithologic units.  The lower part
of the Supergroup, marked by base Jurassic and top Haushi, showed only a small sonic velocity
difference in the two wells for an average velocity of about 5,900 m/sec

Well Correlation (Foreland Region)
Well data provided good lateral correlation for the Hajar Supergroup, the Aruma Group, the Hawasina
Sediments, and the Tertiary cover rocks in the Foreland region (Figure 5).  In addition, the tops of the
Haushi, Haima, and Huqf groups that constitute the pre-Permian Sequence were penetrated in wells
FD-1 and FH-1.

The top of the Albian Natih Formation marks the top of the Hajar.  The full thickness of the Supergroup
was about 2.4 km (Figure 5) in the Hamrat Ad Duru Zone (well MH-1), and in the Interior Zone it
varied from about 2.6 km in wells FD-1 and SD-1 to about 2 km in well FH-1.

In the Foreland region, the Aruma Group was identified in well data as the Fiqa Formation only, with
no mention of the Muti Formation.  The age of the Fiqa Formation from well data is Turonian-
Maastrichtian, which encompasses with the age of the Muti Formation as mapped at the surface by
Chevrel et al. (1992).  In some wells the Fiqa Formation is identified as the ‘Shargi shale member’, and
in others simply as a claystone (HD-1 and MH-1).  The Formation thickness varies throughout the
Foreland (Figure 5).  Its average thickness is 595 m along the correlation section of wells HD-1, MH-1,
and JKH-2, but in wells JKH-1 and KH-1 it is more than twice as thick (maximum 1,350 m).  Such
variations in thickness over short distances could be attributed to either localized structural thickening
of the unit in wells JKH-1 and KH-1, possibly by reverse faulting, or to misidentification of the Fiqa
Formation with the Hawasina Sediments.

The Hawasina Sediments directly overlie the Aruma Group and occur primarily in the Hamrat Ad
Duru Zone.  They extend as far as well NR-1 at the boundary of the Hamrat Ad Duru with the Interior
Zone where they are 154 m thick (Figure 5).  The Sediments consist of imbricated stacks of alternating
sheets of overthrust Guwayza sandstone and limestone, and thrust sheets of the underlying Aruma
Group (Robertson, 1987).  For the purpose of sequence correlation we have included the cumulative
thickness of thrusted sheets of the Aruma Group with its in place thickness (Figure 5).  Well data from
the Hamrat Ad Duru Zone do not include the Tertiary Cover Sequence; only wells SD-1 and FH-1 in
the Interior Zone contain Tertiary sediments.

Well Correlation (Coastal Zone)
Few exploration wells have been drilled in the Coastal Zone and offshore area.  Wells BA-1 and
BMB-1 (see Figure 3 for location) provided the only well data for the coastal and offshore areas.  Well
BA-1 located about 30 km east of the transect penetrated the basal parts of the Paleogene Hadhramout
Group (Thanetian-Bartonian) at a maximum depth of 2,448 m.  Well BMB-1 located 30 km northeast of
BA-1 had a maximum depth of 4,631 m.  Its location and lateral structural complexity prohibited its
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Figure 5: Fence diagram showing correlation of the Hajar Supergroup in the Interior and Hamrat Ad Duru zones (see Figure 3 for location).  Red lines
represent correlation between units within the Hajar Supergroup, and the blue line marks the top of the Aruma Group (Muti and Fiqa formations).  The
Semail Ophilite frontal thrust is shown at the sole of the Hawasina Sediments.  Age and stratigraphic identification is based on interpretations by oil
exploration companies.  Stratigraphy after Rabu et al. (1986); Nolan et al. (1990); Pratt and Smewing (1990); Le Métour, Michel, et al. (1995).
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projection onto the transect.  It is noteworthy that well BMB-1 penetrated 1,195 m of shale, marly sand,
and shaley marl of Maastrichtian-Campanian age equivalent to the Alkhawd Formation.  It was overlain
by only 305 m of the Hadhramout Group, which in BA-1 was 1,200 m thick.

Seismic Interpretation

Interior Zone: Line S50295 (Figure 6)
The upper 1 sec (TWT) of line S50295 consists of the Tertiary Cover Sequence and the Aruma Group
(Fiqa and Muti formations) that overlie the Hajar Supergroup.  In this and other 2-D reflection profiles,
the top of the Muti Formation is inferred from downlapping reflectors of the overlying Fiqa Formation.
The reflectors provide a structural relationship between the interpreted Muti and the Fiqa, and are not
a distinctive representation of the chronostratigraphy of the Muti Formation.  In line S50295, the Fiqa
shows a southwesterly reflector progradation, onlapping the top of the Muti.  The green reflector at
about 200 msec marks the termination of prograding reflectors to be overlain by conformable strata of
the Tertiary Cover.  Generally, the Aruma Group thickens toward the northeast, but the basal Muti
Formation is interpreted as thickening southwestward.

A system of negative flower structures was observed in line S50295 and other 2-D seismic profiles
throughout the Interior Zone, and also in parts of the Hamrat Ad Duru Zone.  The flower structures in
line S50295 show minimal vertical displacement with subtle reflector offsets at the top of the Natih
Formation, and gentle folding in the overlying Aruma Group and Tertiary Cover.  Below about
2 sec (TWT), the structures converge into a single steep fault that offsets the tops of the Haushi Group
(Upper Permian) and Huqf Group (Lower Cambrian) marker reflectors.  Fault continuity or surface
exposure, especially for the two flower structures in the northeastern part of the profile is obscured
within the Fiqa Formation.  Alternatively, the fault tips may be within the shales of the Fiqa Formation
and did not cross into the Tertiary.  However, the base of the Tertiary Cover reflector (green) of the
Hadhramout Group does show gentle folding near the surface.

Interior Zone: Line S50274 (Figure 7)
In line S50274 the distinctive reflector markers at the top of the Natih Formation and the top of the
Haushi Group clearly delineated the Hajar Supergroup.  The Muti Formation top was interpreted at
about the 0.9 sec (TWT) level at the northeastern end of line S50274 and at about 1.35 sec in the southwest.

Hanna and Nolan (1989) interpreted the Maradi Fault Zone as a right-lateral strike-slip fault reactivated
in Pliocene-Pliestocene times.  In line S50274 we interpreted it as being a basement-associated, right-
lateral strike-slip fault that included a reverse component.  The reverse component was inferred from
the 0.35 to 0.4 sec (about 900 m) time difference in the Natih reflector marker across the fault zone .
Internal collapse at distances from 2 to 6 km, possibly by normal faulting, occurs toward the center of
the structure.  In line S50274, the northeastern arm of the central part of the fault zone separates outcrops
of the Fiqa Formation to the northeast from the steeply dipping (72ºS) Eocene Umm Er Radhuma
Formation and the Miocene-Pliocene Berzman Formation of the Tertiary Cover Sequence.

The relative thickness of the Aruma Group and the Tertiary Cover Sequence on the southwestern side
of the Maradi Fault Zone is about 1.6 sec (TWT), whereas to the northeast Fiqa Formation has a relative
thickness of about 1.2 sec (TWT). In the southwest, the thickness of the Aruma Group and the Tertiary
Cover is correlated with the thickening (1.3 sec) observed at the northeastern end of interpreted line
S50295 (Figure 6).  Therefore, we interpreted the Maradi Fault Zone to include a reverse faulting
component, possibly related to the Late Cretaceous ophiolite emplacement process.  The deformation
was followed by a transtensional strike-slip faulting event in the Pliocene-Pliestocene, as dated by
Hanna and Nolan (1989).

Interior Zone: Line R40984 (Figure 8)
Directly north of line S50274 (Figure 7) is line R40984; the two have about 8 km overlap.  Correlation
between the two lines is possible as reflectors are subhorizontal and no significant deformation exists
in the overlap area.  In line R40984, the top of the Hajar Supergroup is distinct in the southwestern
section as far as its intersection with the subsurface structure of Jebel Qusaybah.  The top of the Hajar
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Supergroup then becomes less obvious and its interpretation is based on correlation with the
northeastern side of Jebel Qusaybah and surface outcrops.  Only the Aruma Group overlies the Hajar
sequence in this section.  The Jebel Qusaybah anticline is part of an arc-shaped range of hills that
extends westward from Jebel Madmar (Figure 3).  In this section, Jebel Qusaybah separates the
southernmost extent of the Hawasina Sediments in the Hamrat Ad Duru Zone from the Interior Zone.

3.0

2.0

1.0

0

Tw
o-

w
ay

 T
im

e 
(s

ec
)

Maradi Fault Zone

2 4 6 108 12 14

200

300
Elevation (m)

Interior Zone Line S50274

Eur
MPlbz Fiqa FiqaQuaternary

72 52

3.0

2.0

1.0

0

Tw
o-

w
ay

 T
im

e 
(s

ec
)

Muti Formation
(Turonian-Santonian)

Top of Natih
(Cenomanian-Turonian)

Base of Sahtan
(Base of Jurassic)
Top of Haushi
(Early Permian)
Top of Huqf
(Early Cambrian)

Fiqa Formation
(Campanian-
Maastrichtian)

Distance (km)

H
aj

ar
 

S
u

p
er

g
ro

u
p

 
Te

rt
ia

ry
co

ve
r

A
ru

m
a

G
ro

up
pr

e-
P

er
m

ia
n

 S
eq

ue
nc

e

(a)

(b)

NortheastSouthwest

Figure 7: (a) Migrated 2-D seismic reflection profile of line S50274 crossing the Maradi Fault Zone
(see Figure 3 for location).  (b) An interpretation of seismic line S50274 showing marker reflectors
and relative motion within the Maradi Fault Zone.  The fault zone has two styles of deformation: a
strike-slip component (flower structure) and a reverse component inferred from the depth difference
of the Natih Formation reflector (orange line) across the fault zone. Dip information is shown at
surface in (b).  MPlbz = Miocene-Pliocene Berzman Formation; Eur = Eocene Umm Er Radhuma
Formation.  Wrench faults: away from observer     ; toward observer     .
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The Jebel Qusaybah anticline shows subsurface symmetry indicated by the top of Hajar Supergroup
marker reflector at about 1 sec (TWT) on both sides of Jebel Qusabah.  We interpreted the anticline as
being supported by a possible salt intrusion into the host rock at about 2 sec (TWT) (Figure 8b).  A set
of normal faults is interpreted to affect the western limb of the Jebel Qusaybah anticline and the faults
may be related to the event that formed the negative flower structures observed in line S50295
(Figure 6).  The Fiqa Formation reflectors onlap the southwestern limb of the Jebel Qusaybah structure.
Reflectors at the base of the Fiqa are also interpreted to downlap the top of the Muti Formation and
prograde toward the southwest.

Figure 8: (a) Migrated 2-D seismic reflection profile of line R40984 across the Jebel Qusaybah
anticline (see Figure 3). (b) A interpretation of seismic line R40984 showing a normal fault system
southwest of Jebel Qusaybah.  A zone of strike-slip faulting (flower structure) is interpreted south
of Jebel Qusaybah.  A bold red line delineates the Semail Ophiolite frontal thrust at the sole of the
Hawasina Sediments.
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Hamrat Ad Duru Zone: Line R41019 (Figure 9)
Line R41019 is located east of the transect in the Hamrat Ad Duru Zone.  It has the highest signal-to-
noise ratio and shows the best stratigraphic relationships within the Aruma Group.  In this profile, the
Natih Formation reflector at about 1.2 sec (TWT) marks the top of the Hajar Supergroup and its base is
the top Haushi Group (Late Permian) reflector at about 2 sec.  The Supergroup shows only minor
changes in thickness compared to the those of the Interior Zone.  The top of the Hajar was identified in
seismic profiles throughout the Hamrat Ad Duru Zone, which establish its continuity with outcrops
on the southern limb of Jebel Akhdar.  Line R41019 also shows the tops of the Huqf Group (Lower
Cambrian) and the Buah Formation (Vendian/Infracambrian).

Downlapping reflectors of the Fiqa Formation mark the top of the Muti Formation, which was thinner
than previously interpreted from profiles in the Interior Zone.  The downlapping reflectors of the Fiqa
Formation (dark green) show steeper dips, especially in the northern half of the line.  The downlapping
reflectors indicate progradation toward the southwest.

Coastal Zone: Line IUL0205 (Figure 10)
A gap in the coverage of seismic and well data across the Jebel Akhdar range limited the subsurface
interpretation.  To provide constraints, we used structural information from 1:200,000-scale geological
maps to correlate the pre-Permian Sequence, the Hajar Supergroup, and overlying units, across the
Mountain Zone.

In the Coastal Zone we interpreted line IUL0205 rather than the transect line IUL0203.  Line IUL0205
is parallel to IUL0203 and about 8 km to the southeast.  It showed almost identical structural features
but with better resolution.

The Nakhl Ophiolite block of the widespread Semail Ophiolite is overlain in the north by Tertiary
sediments, and Quaternary alluvial deposits of the Tertiary Cover Sequence characterize the Coastal
Zone.  The top of the Hajar Supergroup could not be identified everywhere in the seismic reflection
coverage of the Zone, probably because the thick Nakhl Ophiolite and the Tertiary Cover masks the
Hajar Supergroup as seen in the Foreland.  Chaotic seismic reflections to reflection-free zones were
observed within the 2.5- to 10-km-thick Nakhl Ophiolite block (Shelton, 1990).

The Nakhl Ophiolite is exposed at the southwestern end of line IUL0205 adjacent to the northern limb
of the Jebel Akhdar structure.  The Ophiolite consists of both mantle and crustal units of the ophiolite
body separated at the surface by a northward-dipping thrust boundary.  The crustal section of the
Nakhl Ophiolite has an average dip of about 20ºN (Nicolas et al., 1996).  At the surface, a narrow
exposure of the Hadhramout Group forms a distinct linear feature that dips in direction 15ºN.  Line
IUL0205 shows the upper boundary of the ophiolite body as dipping at about 25ºN based on the
depth-converted section.

To the northwest of the transect, Hawasina Sediments overlie the volcanic section of the Semail
Ophiolite.  However, in the Coastal Zone, geological maps show no units equivalent to the Hawasina
nappes as overlying the Nakhl Ophiolite block.  Seismic lines IUL0203 and IUL0205 (Figure 3) provided
no evidence of discordant units above the Nakhl Ophiolite.  Three seismic stratigraphic sequences
were identified as overlying the Nakhl Ophiolite block in Figure 10.  They are as follows: (1) the
Alkhawd Formation equivalent and the Hadhramout Group (late Campanian to Eocene); (2) the Asmari
equivalent (Late Oligocene); and (3) the Lower Fars equivalent (Early Miocene to Recent).

On line IUL0205, the Alkhawd Formation equivalent is unconformable on the Nakhl Ophiolite.  The
Formation thickens toward the northeast and is pinched-out at the surface near the southwestern end
of the seismic line.  Cyclical shallow- to deep-shelf carbonates of the Hadhramout Group overlie the
Alkhawd according to an unpublished 1985 report by Amoco Oman Petroleum Company.  The base of
the Hadhramout reflectors shows an ambiguous boundary relationship with the top of the Alkhawd
that cannot be resolved without well penetrations.  An Early Oligocene regional erosional unconformity
recorded in well BA-1 (unpublished report, Amoco Oman Petroleum Company, 1985) marks a period
of uplift that followed the deposition of the Hadhramout Group.
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The interpretation of the seismic reflection data indicates a Middle to Late Oligocene marine
transgression that led to the deposition of the Asmari Formation in a shallow outer shelf to marginal-
marine environment (unpublished report, Amoco Oman Petroleum Company, 1985).  Evidence from
the seismic profile showed that the transgression was perturbed by episodic margin uplifts represented
by the seaward migration of facies A, B, C, and D (inset Figure 10).  Within each cycle, transgression is
indicated by reflectors onlapping the top of the older cycle.  The Lower Fars Group equivalent and the
Quaternary alluvial deposits form a wedge-shaped seismic pattern, indicative of a continued margin
uplift throughout the Miocene and possibly into Quaternary times.

The seismic reflection gap between 14 and 16 km is an offset of the NE-dipping Hadhramout Group
that can be traced on seismic lines parallel to IUL0205 for about 45 km transverse to the transect.  It
may be due to a magmatic intrusion that was reported by Al-Harthy et al. (1991) to have occurred
during the Tertiary on the northern flanks of the Jebel Akhdar and Saih Hatat structures.

Figure 10: (a) Interpretation of 2-D seismic reflection profile of line IUL0205 showing the Semail
Ophiolite (Nakhl Block) and the overlying stratigraphic units.  (b) Seismic stratigraphy showing
retrograding sequence complex along the continental shelf margin; A, B, C, and D are
progradational sequences within the retrograding complex.  The retrograding complex is
indicative of episodic uplift of the Oman Mountains during the Oligocene.  Note the seismic
reflection gap between 14 and 16 km (for explanation see text below).
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MOHO DEPTH ESTIMATES FROM RECEIVER FUNCTIONS

Methods

Receiver function is a single-station teleseismic technique that employs the P-wave train to isolate
structural effects at a seismic station.  Generally, the receiver-function technique uses converted seismic
phases, such as P to S (Ps) and converted P-wave multiples reflecting within the crust.  For earthquakes
at distances of more than 30º, seismic P-waves are steeply incident beneath a seismic station, and
dominate the vertical components of ground motion.  In contrast, a converted phase such as Ps, is
largely contained in the horizontal components of ground motion (Clayton and Wiggins, 1976; Burdick
and Langston, 1977; Cassidy, 1992; Zandt and Ammon, 1995; Sandvol, Seber, Calvert and Barazangi,
1998).  The locally generated Ps phase amplitude is sensitive to the S-velocity structure beneath the
station (Cassidy, 1992), and its arrival time relative to the first P-wave is used to estimate the depth of
conversion.  Since the largest velocity change in the lithosphere is along the Moho boundary, receiver
functions are mainly used for Moho depth estimation (Sandvol, Seber, Calvert and Barazangi, 1998;
Sandvol, Seber, Barazangi, et al., 1998).

A seismic wave propagating from a source to a seismic station includes information about the source
mechanism, the velocity structure surrounding the source, the velocity structure along the ray path,
and the crust and upper mantle structure below the recording station (Burdick and Langston, 1977).
For the recording of teleseismic earthquakes, the converted Ps phase is isolated from the source effects
by deconvolving the vertical component of ground motion with the radial components of the
P-waveform to produce the time series known as Receiver Function (Zandt and Ammon, 1995).
Whereas, the radial component is used to estimate Moho depth, the tangential component provides

information about any possible dip in the Moho interface.  Details of the receiver-function technique
used are described in Sandvol, Seber, Calvert and Barazangi (1998) and will not be discussed further.

Data and Analysis

Teleseismic data were recorded by two short-period (1 Hz), 3-component, portable digital instruments
deployed at four locations (stations KTOM, AWBI, JBRN, and BSYA) on the transect (Figure 3).  The
stations were at locations where electrical power was available and accessibility to the site was not
restricted and each was occupied for at least two months, (Table 1).  The sampling interval was 50
samples per second.

The recorded teleseismic earthquakes were mainly from events in the western Pacific (Japan,
Philippines, Taiwan, Papua New Guinea, and Indonesia) (Figure 11), and most were associated with
subduction zones.  They provided the necessary distance required for receiver-function analysis.  We
used the time difference between the primary P-wave arrival and the converted P to S-wave (Ps)
arrivals (Figure 12) to estimate depth-to-Moho along the transect.  The average time differences between
Ps-Moho and P are 4.7, 5.6, and 4.9 seconds for the stations KTOM, AWBI, and JBRN, respectively
(Figure 12).  We observed no obvious converted Moho phase (Ps-Moho), at station BSYA, possibly due

Station Name Latitude (N) Longitude (E) Elevation (m) Recording time
(days)

     KTOM 23.48° 57.69° 107 142
     AWBI 23.30° 57.53° 397 37
     JBRN 22.91° 57.26° 552 43
     BSYA 22.73° 57.24° 348 80

Table 1
Seismic station information, including recording days for each

station as used in receiver function study.
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to site problems.  The receiver function of station KTOM gave the clearest signal that exceeded the
noise level.  At all stations, the tangential components of the receiver function gave no indication of a
steeply dipping Moho, as shown by the low amplitudes in the tangential component at the arrival
times of the Ps phase.  From our analysis of the receiver functions, we observed an intracrustal phase
conversion (Ps-crust) beneath stations JBRN and BSYA.

In order to estimate the depth-to-Moho using the receiver functions shown in Figure 12, accurate
velocity information beneath each station was required.  We did not have information on the average
crustal velocity from directly beneath the stations, but studies of the eastern Arabian Shield had
estimated the average P-wave velocity of the crust in the region to be 6.6 km/sec (Mooney et al., 1985)
and 6.5 km/sec (Badri, 1990).

These values were considered to be representative of the eastern Arabian margin and Foreland.
However, the study area has significant thickness of sediment that could affect the average crustal
velocities.  To estimate the effect of the sedimentary section, we used the average sonic velocity for the
total depth of wells DA-7 and ML-1.  The average velocity for the approximately 5-km-thick sedimentary
section was between 5.2 km/sec and 5.4 km/sec (Figure 4).  In this region, sedimentary units younger

5.7/33

5.4/33
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5.8/10

5.6/10

5.9/33

5.9/33

4.7/33

5.6/33
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Stations location

5.3/540 Body-wave magnitude/
depth (km)

OMAN

Figure 11: Locations of teleseismic earthquakes that were used to obtain the final receiver
function response for stations KTOM, AWBI, JBRN, and BSYA (see Figure 3 for location of
stations).  Recorded events location, magnitude, and depth information were obtained from
the US Geological Survey Earthquake Event Catalog.
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than Late Cretaceous have an average velocity of 3 km/sec.  The thickness of the post-Late Cretaceous
sediments varies, but the maximum thickness along the transect is only from 1 to 1.5 km and this
would have an effect of about 2 percent on the averaged crustal velocity.

Since we did not have absolute velocity values for the entire crust and only average measurements
from a nearby region, we used a range of velocity values (minimum 6.4 km/sec, maximum
6.8 km/sec) for the whole crust to take into account any potential uncertainty.  An additional velocity
error is introduced by the converted phase (Ps) wavelength where the interface resolution is dependent
on the frequency of the impinging wave.  Hence, we estimated an additional error of about 1 km.

Figure 12: Radial and tangential component stacks of receiver functions for stations KTOM, AWBI
and JBRN, BSYA.  Values in brackets denote distance between station and event/back azimuthal
direction from station to event.
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Results (Figure 13)

Station KTOM
Based on a 6.6 km/sec crustal velocity, and a 0.25 Poisson ratio (Zandt and Ammon, 1995), the calculated
Moho depth for station KTOM on the southern edge of the Coastal Zone was 41 km.  Taking into
account potential errors, we estimated the Moho depth beneath this station to be 41 ± 2 km.  Due to the
incident angle of the incoming seismic wave, the actual Moho impingement is at 8 km east of KTOM
(see Figure 3) based on the assumed seismic velocity.

In the Coastal Zone, the ophiolite blocks are estimated to vary in thickness from between 10 and 20 km
(Shelton, 1990).  Ophiolites in northern Oman have an average compressional velocity of about
6.9 km/sec (Christensen and Smewing, 1981) and account for at least 25 percent of the average
continental crust thickness of 45 km in the region.  This high velocity could result in a decrease of
about 4 km in the estimated Moho depth at station KTOM, which is approximately equal to the total
estimated error.

Station AWBI
This station recorded a depth-to-Moho of 49 ± 2 km, which is about 8 km deeper than at KTOM.  The
impingement location of station AWBI (see Figure 3) is within the northern limb of the Jebel Akhdar
range, which isolates it from the high-velocity ophiolite effect of the region.

Station JBRN
A Moho depth of 43 ± 2 km was calculated for this station on the southern side of the Jebel Akhdar
range.  The actual Moho impingement of JBRN (see Figure 3) is within the Hamrat Ad Duru Zone
where the ophiolite body is only about 500 m thick (based on seismic and gravity modeling).  As such,
the ophiolite would not have any significant effect on the calculated depth.

Figure 13: Velocity-depth trade-off curves for stations KTOM, JBRN and AWBI.  For a
6.6 km/sec average crustal velocity, we estimated a Moho depth of 41 ± 1 km, 43 ± 1 km, and
49 ± 1km for stations KTOM, JBRN, and AWBI, respectively.  The depth error bar was
estimated for a velocity minimum of 6.4 km/sec and maximum of 6.8 km/sec velocity error.
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No Moho depth estimate was made at Station BSYA as no obvious converted Moho phase (Ps-Moho)
was observed, possibly due to site problems.

GRAVITY MODELING

In order to determine the subsurface structure along the entire transect, we used gravity modeling
that was constrained by the existing seismic reflection profiles, well logs, and receiver function results.
Gravity modeling provided data that was unavailable from the seismic profiles and well logs.

The seismic and well log data gave thickness information for the upper 8 km along the transect,
excluding the Jebel Akhdar range that has no seismic coverage or wells.  However, seismic reflection
profiles alone could not provide the total depth-to-basement.  Similarly, the receiver function provided
accurate Moho depths at three points on the transect but could not predict the Moho topography
elsewhere.

Gravity modeling is a non-unique technique but our use of seismic, well logs, and receiver-function
results improved its usefulness.  A GMSYS gravity modeling software package from Northwest
Geophysical Associates Incorporated was employed.  It uses a 2.5-D body model that allows limits to
be placed on the lateral extent of each modeled body.

Figure 14: (a) Plot of maximum, minimum, and average Bouguer gravity anomalies in a 50-km-wide
swath along the transect (see Figure 3 for location). (b) Plot of maximum, average, and minimum
elevation profiles along the transect.  Gravity and elevation values were calculated for a 5-km
sampling interval along the entire transect.
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Data

In our study, we used the Bouguer gravity data for Oman compiled by Ravaut and Warsi (1997).  The
Bouguer gravity anomalies are based on internationally accepted gravity formulae and were corrected
for a slab of density 2.67 g/cc.  The Bouguer point values and surface elevation data at 5-km intervals
were taken from a 50-km-wide swath along the transect.  In areas where there was no digital information,
we obtained the average Bouguer values from the published Bouguer Anomaly Map of Oman by
Ravaut and Warsi (1997) with the same sampling interval and swath width.  Figure 14 is a plot of the
average gravity and altitude values.  Density information of modeled stratigraphic units was primarily
obtained from corrected bulk density values and/or transient sonic velocity from well logs.  Transient
sonic velocity values were converted to density values by means of Gardner’s equation (Gardner
et al., 1974).

Wells JKH-2, FH-1, and SD-1 provided density values for the Hawasina Sediments (2.45 g/cc) and the
Aruma Group (2.28 g/cc).  Values for the Hajar Supergroup (2.6 g/cc) were obtained from wells
ML-1 and DA-7 located northwest of the transect (see Figure 3), and those for the ophiolite
(3.07 g/cc) and the upper mantle (3.3 g/cc) were taken from a previous study by Ravaut (1997a) in the
region.  We estimated the pre-Permian Sequence density to be from 2.5 to 2.55 g/cc in order to
accommodate the Ara salt of 2.2 g/cc.  The salt is present throughout the study area, and has an
enormous thickness variation of from zero to 2,000 m (Mattes and Morris, 1990; Mount et al., 1998).
Our estimated pre-Permian Sequence density made a good model fit with the observed gravity values
(Figure 15).  We estimated a comparable density for the middle and lower crust of 2.7 g/cc.

Constraints on the data interpretation in the Coastal Zone included the upper boundary of the ophiolite
block that dips north at 25º, and the density of the ophiolite and of the overlying sequences.
Well BA-1 provided density information for the Hadhramout Group (2.45 g/cc) and for the Eocene-
Holocene sediments (2.2 g/cc).  In the Coastal Zone, we estimated the density of the Alkhawd Formation
equivalent to be the same as that of the Hadhramout Group.  In this Zone, the edge of the continental
margin was found to be about 40 km northeast of the end of the transect where it drops off into the
Oman remnant basin at about 3,000 m depth.  Therefore, we allowed for the termination of the shelf
and the pre-Permian Sequences toward the northeastern end of the model (Figure 15) and for the
depth-to-basement to shallow in the same direction.

Moho depths obtained at stations KTOM, AWBI, and JBRN were used to constrain the structure of the
Moho across the Jebel Akhdar range.  In all models, we allowed the Moho depth south of Jebel Akhdar
to vary about the determined Moho depth of 43 km at JBRN.  Toward the northeastern end of the
transect, we varied the Moho depth below what was obtained at KTOM in order to accommodate
crustal thinning toward the oceanic Gulf of Oman.  In addition, we allowed the Moho depth to vary
beneath Jebel Akhdar so as to take into account possible crustal thickening.

Observed Bouguer gravity values along the transect varied from -80 mgal beneath the Jebel Akhdar
range to a maximum of+100 mgal about 40 km to the northeast (Figure 14).  In the Foreland region of
the southwest, the values are uniform at about -40 mgal with a variation of about 20 mgal.  The values
decrease northeastward and reach their minimum at Jebel Akhdar.  From this point northward, the
Bouguer gravity values increase sharply toward the continental margin.  A shorter wavelength positive
anomaly is superimposed on the regional anomaly, northeast of Jebel Akhdar at about 180 km.  This
anomaly corresponds to the Nakhl Ophiolite block.  Farther north, the anomaly increases to an average
value of + 60 mgal reflecting crustal thinning and the proximity to the oceanic crust of the Gulf of
Oman.  A superimposed negative anomaly at about 225 km coupled with the positive ophiolite anomaly
corresponds to a small intramargin basin.

The ophiolite emplacement in the Oman Mountains resulted in variable grades of metamorphism
(El-Shazly and Coleman, 1990).  Amphibolites and greenschists were formed in the high-temperature,
low-pressure environments at the base of the ophiolite, whereas high-pressure, low temperature
eclogites and blueschist facies occurred at various levels within the Hajar Supergroup and the
pre-Permian sequence along the continental margin.  High-pressure, high-temperature conditions were
restricted to the Saih Hatat structure with the formation of eclogites on its northern boundary
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(El-Shazly and Coleman, 1990).  In contrast, the Jebel Akhdar structure was affected only by the early
phases of well-developed cleavage deformation (Le Métour, Bechennec and Roger, 1995).  To
accommodate this low metamorphic gradient we included a density increase toward the northeast
across Jebel Akhdar to the Coastal Zone.  The low-density gradient increase affected lithologic units
overlain by the Hawasina Sediments and the Semail Ophiolite.

Gravity Analysis

Model-A
In general, basement topography in the Foreland region was found to mimic the observed gravity
response (Figure 15, Model A).  Gravity modeling showed a relative basement high at a depth of about
7 km below the Jebel Qusaybah structure.  The relative anomaly is part of a basement high at an
average depth of 9 km that extends for about 60 km from the Maradi Fault Zone to the center of the
Hamrat Ad Duru Zone.  Basement depths south of the Maradi Fault Zone and the northern end of the
Hamrat Ad Duru Zone average 13 km.  A small anomaly of less than 10 mgals corresponded to the
ophiolite body directly south of Jebel Akhdar.  The depth to the basement in the core of Jebel Akhdar
was about 9 km and this implied a thickened pre-Permian Sequence below the Jebel Akhdar range
(Figure 15).

The considerably thickened pre-Permian Sequence at the core of Jebel Akhdar corresponded to a short
wavelength gravity response that could not be compensated by depth changes at the mountain root.
The northern limb of Jebel Akhdar, however, showed an extensively thinned pre-Permian Sequence
below the Allochthonous Sequence of the Semail Ophiolite and the Hawasina Sediments.  North of
Jebel Akhdar, a positive and a negative anomaly couple overrode the regional anomaly and
corresponded to the N-dipping ophiolite body and the intramarginal Tertiary basin, respectively.  The
average thickness of the ophiolite block north of Jebel Akhdar was interpreted to be 5 km with a lateral
extent of about 95 km to the north.

Below the ophiolite, the Hawasina Sediments have an average thickness to about 1 km along the
Coastal Zone, but thicken to approximately 4 km below the outcrop of the ophiolite block directly
north of Jebel Akhdar (Figure 15).  Based on Model-A, the modeled Hawasina Sediments north of
Jebel Akhdar are comparable in thickness to those south of Jebel Akhdar that were constrained by
seismic and well data.  The geometry of the ophiolite body in all models required a leading and a
trailing wedge of variable density and a thickness of between 5 and 8 km.  The depth-to-basement in
the Coastal Zone reached its maximum at about 17 km below the outcrop of the ophiolite body.  It
shallowed northeastward and imposed thinning of the Hajar Supergroup and the pre-Permian Sequence
(Figure 15).

Model-B
In this model, we included a semi-gradual density increase of 0.05 g/cc from southwest to northeast
for the pre-Permian Sequence, the Hajar Supergroup, the Hawasina Sediments, and the Aruma Group
(Figure 15).  Because the density of the pre-Permian Sequence was increased to 2.55 g/cc, the depth-
to-basement was reduced by about 2.5 km in the Interior and Hamrat Ad Duru zones and the thickness
of the pre-Permian Sequence was correspondingly reduced.  Consequently, only large topographical
differences, such as the Jebel Qusaybah anomaly, were clearly resolved in the Foreland region.  North
of the Mountain and Coastal zones, this density change resulted in a dip increase of the northern limb
of the Jebel Akhdar range (Figure 15).  This consequently increased the thickness of the Hawasina
Sediments at the expense of the ophiolite body.  Thickness-density trade-offs between the Hawasina
Sediments and the ophiolite resulted in an irregular ophiolite body that we did not consider as being
the favored model.  To further constrain the model in the Coastal Zone, we require information on the
extent of the Hajar Supergroup and pre-Permian Sequence beneath the ophiolite body, or the thickness
of the ophiolite and density values for the lower and middle crust.

Model-A (Figure 15) is our favored model, but Model-B is an alternative and provides an error estimate
for the preferred model.



Crustal transect, Oman Mountains

69

Model-A

Model-B

2.7 g/cc

2.5

2.28 2.25

2.58 2.45 2.5 3.07
2.2

2.32

2.45

2.45

2.6

3.3

2.7 g/cc

2.55

2.26 2.25

2.58 2.45
2.5

3.07
2.2

2.32

2.65

3.3

3.07

2.6

2.6

2.3

D
ep

th
 b

el
ow

 s
ea

 le
ve

l (
km

)

50

25

0

G
ra

vi
ty

 (
m

ga
ls

)

-80

0

Observed

Calculated

80

Distance (km)
0 125 250

D
ep

th
 b

el
ow

 s
ea

 le
ve

l (
km

)

50

25

0

G
ra

vi
ty

 (
m

ga
ls

)

-80

0

80

Lower and Middle Crust

pre-Permian

Upper Mantle

Hajar Supergroup

Hajar Supergroup

Lower and Middle Crust

pre-Permian

Upper Mantle

Hawasina

Hawasina

Ophiolite

Ophiolite

KTOM

AWBI

JBRN

KTOM

AWBI

JBRN

NortheastSouthwest

Coastal ZoneMountain ZoneHamrat Ad Duru Zone Interior Zone

Tertiary basin

Tertiary basin

Shoreline

Shoreline

Figure 15: Cross sections of the crust and upper mantle obtained from gravity modeling.  Model-A:
density values of 2.7 g/cc and 2.5 g/cc for the lower crust and the pre-Permian Sequence, respectively.
A minimum lateral density variation is allowed in this model.  Model-B: density values of 2.7 g/cc
and 2.55 g/cc for the lower crust and the pre-Permian Sequence, respectively, allowing relatively
more lateral variation in density values along the transect.  Density values increase from southwest
to northeast in both models.  Moho impingement from seismic stations JBRN, AWBI, and KTOM
is shown by error bars.
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DISCUSSION

Compilation of multidisciplinary results based on seismic reflection, well data, receiver-function
analysis, and gravity modeling, together with surface geology, provided reliable constraints for the
construction of a complete crustal transect across the Foreland region, the Mountain Zone, and the
Coastal Zone (Figure 16).  Furthermore, data analysis and interpretation provided structural and
stratigraphic relationships that added to the understanding of processes that accompanied the
emplacement of the Semail Ophiolite and later developments along the continental margin and in the
Foreland region.

Foreland Region

Authors such as Robertson (1987), Boote et al. (1990), and Bechennec et al. (1995), have collectively
summarized the nature of the emplacement of the Semail Ophiolite on the Arabian continental margin
and in the Foreland region.  They proposed that three distinct evolutionary processes had taken place;
they were: (1) doming; (2) complete margin subsidence; and (3) the final subsidence of the Foreland
during and after ophiolite advancement.

Based on the interpretation of seismic lines S50295 (Figure 6) and R41019 (Figure 9)—and others in the
Foreland region not shown on Figure 3—we concluded that our interpretation of the seismic
stratigraphy conforms well to the three events, as follows:

(1) Doming during the Turonian was marked by an erosional unconformity at the top of Natih Formation
(Albian) throughout the Foreland region (Bechennec et al., 1995).  We observed that relatively more
erosion at the top of Natih Formation had affected the Hamrat Ad Duru Zone and the Fahud area
(well FD-1) (Figure 5).

(2) In the second stage of emplacement, complete margin subsidence resulted in the development of
the Muti basin throughout the Foreland region and the Mountain Zone (Robertson, 1987; Boote et
al., 1990; Bechennec et al., 1995).  As an indication of regional subsidence, the Turonian-Santonian
Muti Formation (as interpreted from the seismic stratigraphy), overlies the Natih Formation
throughout the Foreland region (Figures 7, 8, and 9).

(3) The third stage of the emplacement was the advancement inland of the Allochthonous Sequence
across the continental margin, as marked by the development of the extensive Campanian-
Maastrichtian Fiqa basin (Bechennec et al., 1995).  The Fiqa Formation records the stratigraphic
interaction as the allochthonous body progressed toward the Foreland (Figures 6 and 9).  Southerly
prograding reflectors of the Fiqa Formation are interpreted as downlapping the top of the Muti
Formation and being indicative of a localized topographic high moving southward (Figures 6 and
9) due to the southward migration of the peripheral emplacement bulge of the Semail Ophiolite.
The prograding reflectors onlap the southwestern edge of the Fahud area in the Interior Zone
where it is possible that the southerly movement of the peripheral bulge ceased (Figure 6).  Our
observations conform to those of Robertson (1987) whereas they conflict with Warbuton et al. (1990)
who advocated a non-migrating peripheral bulge.  As the peripheral bulge advanced, the region
became a deep, open marine, outer shelf to upper bathyal environment in which the Fiqa Formation
was deposited (Robertson, 1987; Bechennec et al., 1995).

The formation of the Jebel Qusaybah anticline is thought to have occurred during Santonian time.
This is in agreement with Hanna and Smewing (1996) who show that growth of the Jebel Salakh
structure began in the Late Cretaceous during deposition of the Aruma Group.  In Figure 8, the Muti
Formation and Hajar Supergroup are both folded and indicate that deformation postdated deposition
of the Muti.  In addition, reflectors of the Fiqa Formation onlap the southern side of the Jebel Qusaybah
anticline (Figure 8).  Reflectors below the Hajar Supergroup at about 2.0 sec (TWT), show no conclusive
evidence of either folding or faulting that would infer a salt-supported structure.
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Farther east, the Maradi Fault Zone acted as a barrier, so that wells NR-1 and HR-1, located north of
the fault zone show no deposits of the Lower Eocene-Pliocene Hadhramout or the Fars Group of the
Tertiary Cover Sequence (see Figures 5 and 17).  Also, to the northeast of the fault zone, the top of
Hajar Supergroup is about 900 m higher relative to the southwestern side of the fault.  The absence of
the Tertiary cover northeast of the Maradi Fault Zone could be the result of differential uplift or
differential subsidence.  In the case of uplift, the Tertiary cover was removed by erosion in the higher
northeastern area, whereas in the case of differential subsidence, the Tertiary rocks were not deposited
at all to the northeast of the fault zone.  Based on our observations, we interpreted the Maradi Fault
Zone to be a basement-associated fault having two styles of deformation.  The two styles were (1) a
reverse faulting component as a pre-Maradi Fault Zone (possibly occurring early in the Late Cretaceous),
and (2) a strike-slip fault component dated as a Pliocene-Pliestocene event by Hanna and Nolan (1989)
(see Figures 7 and 17).

Observations of various seismic profiles (some of which are not included on Figure 3), consistently
showed flower structures in a NW-trending wrench fault system.  The structures affected the entire
Hajar Supergroup, the Muti Formation, and the Aruma Group in the Interior and Hamrat Ad Duru
zones (Figures 6, 7, and 8).  In most seismic profiles, the flower structure offsets can be traced within
the overlying Muti and Fiqa formations; however, in some cases faulting within the Fiqa becomes
ambiguous as in Figure 6.

In our study, we interpreted the Fahud and Natih anticlines as periclines possibly associated with
strike-slip movement along the already weakened zone of the pre-Maradi Fault Zone.  The two
structures have a difference in strike of about 20º with respect to the fault zone (Figure 17).  The fault
zone is parallel to the system of NW-trending wrench faults that was seen on seismic lines throughout
the Foreland region and which implies a regional, possibly transcurrent, event.  In Figure 17,
Section-B intersects a positive flower structure at the southeastern end of the Natih structure.  As seen
on the accompanying geologic map, the deformation of the Natih and Fahud structures includes the
Miocene-Pliocene Berzman Formation that overlies the Hadhramout group.  The timing of this event
is in agreement with earlier work by Hanna and Nolan (1989) who dated the Maradi Fault Zone as a
reactivated Pliocene-Pliestocene right-lateral strike-slip fault. We suggest that the Tertiary deformation
in the Foreland region was largely transcurrent with no conclusive evidence of a major compressional
event (Figure 17).

Hinterland Region

Three important questions have been posed regarding the present-day Jebel Akhdar and the Oman
Mountains.

(1) What is the support mechanism for the present-day topography?
(2) What type of structural style is involved in the architectural formation of Jebel Akhdar, and what

was its timing?
(3) What was the timing of uplift of the Oman Mountains?

In the discussion below, we conclusively answer (1) and propose a solution for (3).  We are not able to
provide a specific solution for (2) as it requires more detailed structural analysis and deeper seismic
imaging, but we do propose a mechanism for the formation of the Jebel Akhdar range.

Answering question 1, Moho depths determined from data obtained from seismic stations JBRN, AWBI,
and KTOM delineated the root beneath the Jebel Akhdar range, and this was confirmed by gravity
modeling.  However, station AWBI, which gave the deepest Moho values (48–51 km) of the three
locations, does not correspond to the highest elevation of Jebel Akhdar.  As shown in Figure 16, the
coincidence of the highest point in the topography with the lowest gravity point is 10 km southwest of
AWBI.  Assuming an isostatically compensated Airy model, the highest elevation (3,000 m), would
correspond to a Moho depth of about 55 km (Figure 16).  The gravity modeling results of Manghnani
and Coleman (1981) and Ravaut et al. (1997) gave maximum Moho depths below Jebel Akhdar of
about 43 km and 47 km, respectively, which is shallower than the depth interpreted beneath station
AWBI.  Both Manghnani and Coleman (1981) and Ravaut et al. (1997) used an average density of
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2.9 g/cc for the continental crust, which we found to be too high.  Our gravity modeling also differed
by including more constraints on the upper 8 km of the sedimentary section, and included Moho
depths across Jebel Akhdar interpreted from new seismological observations.

We associate the beginning of crustal thickening below the Jebel Akhdar range to the Late Cretaceous
emplacement of the Semail Ophiolite and its large southward-directed compressional component.

With regard to question 2, two styles of deformation have been proposed in relation to the present-day
Jebel Akhdar.  They are a fault-bend fold (Michard et al., 1984; Cawood et al., 1990; Hanna, 1990), and
a propagation-fault fold (Mount et al., 1998).  We interpret the present-day structure of Jebel Akhdar
as deformation concentrated along zones of weakness, perhaps shear zones, related to the Permian
rifting event.  We infer the initiation of the Jebel Akhdar structure to be contemporaneous with the
third stage of the Semail Ophiolite emplacement, when the allochthonous load had collided with the
edge of the continental margin.  Nolan et al. (1990) concluded that the Alkhawd Formation mapped
on the flanks of Jebel Nakhl and Saih Hatat included clasts that recorded the unroofing and erosion of
the Saih Hatat and Jebel Akhdar culmination.  The timing of the event was deduced from observations
described below.

Gravity modeling showed that the top of the basement in the core of the Jebel Akhdar structure is at
about 9 km depth, and that it coincides with the extensively deformed pre-Permian Sequence that had
dips of 85º (Figure 16).  The exposed Hajar Supergroup that flanks the pre-Permian Sequence does not
show extreme deformation, but instead has gently dipping strata (about 15ºS) on the southern limb of
Jebel Akhdar and steeper dipping strata (about 28ºN) on its northern limb.  Also, gravity modeling
shows considerable thinning of the pre-Permian Sequence in the northern limb of Jebel Akhdar.  This
sudden decrease in the pre-Permian Sequence thickness on the northern limb may be associated with
the Permian rifting event that formed the eastern margin of the Arabian Plate.  Also shown in Figure
16 is the considerable load of the Semail Ophiolite and the Hawasina Sediments that occurs north of
the mountain and which possibly contributed to the steepness of the northern limb of the mountains.
A density thickness trade-off exists between the ophiolite and the Hawasina Sediments in the Coastal
Zone.

With regard to question 3, based on the interpretation of Figures 9 and 10 we infer a major uplift
episode starting in the Late Oligocene and confirmed by several other observations.  In line IUL0205
(Figure 10) north of Jebel Akhdar, the seismic stratigraphy shows strata of the Alkhawd Formation
and the Hadhramout Group (Tertiary Cover Sequence) dipping north at 25º to 30º.  This observation
provides a Late Oligocene date for the episodic uplift of the Oman Mountains and is in agreement
with fission track dating by Mount et al. (1998) of the uplift of the Jebel Akhdar anticline.  Moreover,
seismic data in the Hamrat Ad Duru Zone (Figure 9) show southerly dipping reflectors of the Fiqa
Formation forming downlaps as the result of the continued uplift of the mountains.  This indicates
that the mountain uplift continued after the Maastrichtian, that is, after the deposition of the Fiqa.  The
uplift also affected the Interior Zone with a lesser magnitude than in the Hamrat Ad Duru and Mountain
zones.

In summary, the uplift and unroofing of the Oman Mountains possibly started in the Late Cretaceous
as indicated by the intermontane deposits of the Alkhawd Formation and its equivalent in the Coastal
Zone (Figure 10).  The major uplift began in the Late Oligocene and was probably related to tectonic
events on the nearby plate boundaries of the Zagros collision zone and the Makran subduction system.
The Cretaceous-Tertiary boundary is an important marker but due to the lack of information, especially
of well data, we were unable to cover it adequately in our discussion of the Foreland region and the
Coastal Zone.  However, it is important to determine the continuity or absence of this unconformity in
the subsurface of the Coastal Zone.

Finally, the offshore area shows the development of an extensive Tertiary sedimentary basin (Oligocene-
Holocene) that could be the extension of the Sohar basin of Ravaut et al. (1998).  The basin extends
northward for approximately 60 km at the northern end of the crustal model (Figure 16).  The basin is
deepest, about 7 km below sea level, in the vicinity of the present-day shoreline.  The seismic section in
the offshore area is primarily characterized by gravity faults (Figure 16).
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CONCLUSIONS

The four main results of this study are as follows: (1) The eastern Arabian continental crust has an
average thickness of about 40 km in the Foreland region, is about 50 km thick beneath Jebel Akhdar,
and about 35 km beneath the Coastal Zone.  (2) Based on gravity modeling, the pre-Permian Sequence
in the core of Jebel Akhdar is estimated to be about 9 km thick.  This observation conforms well with
most structural models of the Jebel Akhdar range that require thickening, either by duplexing, blind
thrust faulting, or decollement below the core and the southern limb of Jebel Akhdar.  (3) Based on
surface and subsurface  observations and gravity modeling, the Nakhl Ophiolite block extends beyond
the shoreline for approximately 80 km from its most southerly surface outcrop.  The Nakhl block
averages 5 km in thickness, whereas the ophiolite body south of the Jebel Akhdar range has a maximum
thickness of only 1 km.  The underlying unit of the Hawasina Sediments has an average thickness of
between 2 and 3 km in the Hamrat Ad Duru Zone and 2 km in the Coastal Zone.  (4) Basement-related
wrench faults in the Foreland region strike northwest and are predominantly transtensional.  They
often offset preexisting structures such as the Salakh-Madmar range. We conclude that no major
compressional events took place during the Tertiary within the Foreland region.
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